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Background

/' Recurrent events are repeated occurrences of the same type of events
on the same patient over time in clinical trials which can be used as an
evaluation of treatment effect.

// Motivated trials:

Hospitalization of heart failure (HHF) in heart failure trials — recurrent events.

Recurrent hospitalizations are strongly associated with cardiovascular death (CVD)
— a terminal event.

/ For better trial management, an interest is to predict when a pre-
determined number of events can be achieved during an ongoing trial.




~= Background

Figure 1: Visualization of four distinct life history processes. CVD: cardio-
vascular death.
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[1] Akacha, M., et al. (2018). Request for CHMP Qualification Opinion: Clinically Interpretable
Treatment Effect Measures based on Recurrent Event Endpoints that Allow for Efficient Statistical
analyses. Recurrent Event Qualification Opinion Consortium.




~= Background
/| Plenty of research on event projection for time-to-first event available.

/ Some of them are done under the Bayesian framework (Donovan et.
al, 2006, Aubel et. al, 2020).

/- Seminal work on the analysis of recurrent events with a terminal event:
Rogers et. al (2016) and Akacha et. al (2018), but not for prediction.

/ No known work on prediction of recurrent events in a Bayesian
approach so far, especially not in the more complex situation with an
associated competing event.
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«= Methods
/- Uniform enrollment is applied, which can be extended to Poisson-
Gamma or site-wise Poisson-Gamma models.

/- A joint frailty model [5] for the recurrent and terminal evets is defined
through the hazards (unstratified gap-time model) :

1 (Elwy) = wiro(6), 4 (Elwy) = wi' Ao(D).

Hazard for recurrent event j of patient i is defined by r;;, hazard for the terminal
event of patient i is similarly defined as 4;.
The patient specific frailty w; follows Gamma(y, ;).

A parameter a correlating the recurrent and terminal events (« < 0, =0, >0
indicate negative, zero, positive correlation).

/- Time to censoring is assumed to be independent of recurrent and
terminal events and exponentially distributed.




«= Methods

/ Blinded interim prediction

Pooled analysis.

Bayesian latent class analysis.

/- Unblinded interim prediction
Issues with unblinding, e.g., type | error control, likely introduction of bias.
Would it improve precision?




Simulated case analysis
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Reference: Akacha et al. (2018) - Request for CHMP Qualification Opinion
Expected enrolled patients: 4350

Expected recruitment period: 3 years

Expected follow-up period: 2 years

Expected events number: 1515

Cut-off time for interim prediction: 2/3 of the expected events are obtained (1010)
Uniform enrollment

Exponential recurrent events — baseline hazard for placebo = 0.16788, HR = 0.7
Exponential terminal event — baseline hazard for placebo = 0.06036, HR = 0.8
Exponential censoring — baseline hazard = 0.01716

Frailty variance = 5.7

Alpha = 0.75




«= Simulated case analysis

/- At what time, there is a 95% probability of reaching the expected
number of recurrent events?
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Figure 2: Median observed event number (blue) and 90%
predictive interval for median predicted number of events (red)




«= Simulated case analysis

/' How is the overshoot or undershoot in predicted event number?
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Figure 3: Difference in predicted and observed event numbers at the time when

there is 90% predictive probability of achieving expected number or more (targeted
number of events: 1515).




*- Simulated case analysis

/" When do we want to do the interim prediction?
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Figure 4: Difference in predicted and observed time with different cut-off date




Simulations

/I
/I
/l
/I
/I
/I
/
/I

/I
/I
/l

Reference: Rogers et. al (2016)

Expected enrolled patients: 300

Expected recruitment period: 1 year

Expected follow-up period: 2 years

Expected events number: 320

Uniform enrollment

Exponential recurrent events — baseline hazard for placebo = 0.9, HR = 0.7

Exponential terminal event — baseline hazard for placebo = 0.37 (annual event rates
31%), HR =0.8

Exponential censoring — baseline hazard = 0.05 (annual events rate 5%)
Frailty variance (6) = 1
Alpha = 1




) Simulations

/' How does the treatment effect for recurrent events affect prediction

precision?
Prediction precision
re"('ir‘;‘;; t 1-mth 2-mth 3-mth 4-mth 5-mth 6-mth
events precision precision precision precision precision precision

0.8 28% 52% 70% 83% 90% 95%
0.7 21% 38% 58% 73% 83% 91%
0.6 17% 34% 49% 58% 70% 76%

Note:

+ Cut-off while observing 67% events.
« The average time period for prediction when HR equals to 0.6 is 1.94, it is 1.57 for HR equals to
0.7 and 1.34 for 0.8.

The greater the treatment effect for recurrent events, the more uncertain the pooled
analysis likely due to higher data disparity in pooled analysis.
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Simulations

// Does the treatment effect for terminal event affect prediction precision?

Prediction precision

i | 1mth [ 2mh | 3mh | 4mh [ Smh | emih
event preC|S|0n preC|S|0n preC|S|0n preC|S|0n preC|S|0n preC|S|0n
1 17% 30% 47% 59% 68% 75%
0.8 21% 38% 58% 73% 83% 91%
0.6 25% 48% 69% 81% 90% 96%
Note:

Cut-off while observing 67% events.
« The average time period for prediction when HR equals to 1 is 1.27, it is 1.57 for HR equals to
0.8 and 1.33 for 0.6.

The greater the treatment effect for terminal event, the more precise the prediction

IS.

Interplay between recurrent events and terminal event.




¢+ Simulations
/' Does the baseline hazard for recurrent events affect prediction precision?

Prediction precision

Baseline
hazard for 1-mth 2-mth 3-mth 4-mth 5-mth 6-mth
recurrent precision precision precision precision precision precision
events
0.9 21% 38% 58% 73% 83% 91%
1.2 50% 80% 93% 98% 99% 99%
Note:

» Cut-off while observing 67% events.

for baseline hazard equals to 1.2.
Larger baseline hazard for recurrent events result in better prediction precision.

The average time period for prediction when baseline hazard equals to 0.9 is 1.57 while it is 1.01

Recurrent events occur earlier and more patients contribute to the estimates.




) Simulations

/ Does the baseline hazard for terminal event affect prediction precision?

Prediction precision

Baseline
hazard for 1-mth 2-mth 3-mth 4-mth 5-mth 6-mth
terminal precision precision precision precision precision precision
event
0.29 38% 68% 82% 92% 96% 99%
0.37 21% 38% 58% 73% 83% 91%
Note:

+ Cut-off while observing 67% events.
« The average time interval for prediction when baseline hazard equals to 0.29 is 1.31 while it is
1.57 for baseline hazard equals to 0.37.

Smaller baseline hazard for terminal event results in better prediction precision.
More terminal events lead to fewer patients contributing to the analysis.




«= Simulations

/ Does the frailty variance affect prediction precision?

Prediction precision

Theta 1-mth 2-mth 3-mth 4-mth 5-mth 6-mth
precision precision precision precision precision precision
1 21% 38% 58% 73% 83% 91%
1.5 16% 30% 44% 56% 67% 74%
Note:

» Cut-off while observing 67% events.

» The average time interval for prediction when theta equals to 1 is 1.57 while it is 1.28 for theta
equals to 1.5.

Larger patient heterogeneity makes estimation more difficult and decreases prediction

precision.




«= Simulations

/ Does alpha (correlation between recurrent events and terminal event)
affect prediction precision?

Prediction precision

Apha | Tmih ] 2mih | mth o 4mih ) S | 6
precision precision precision precision precision precision
1/1.5 28% 56% 75% 86% 94% 97%
1 21% 38% 58% 73% 83% 91%
1.5 21% 35% 49% 59% 70% 79%
Note:

+ Cut-off while observing 67% events.
« The average time interval for prediction when alpha equals to 1/1.5 is 1.28, it is 1.57 for alpha

equals to 1 and 1.49 for alpha equals to 1.5.

Smaller a (>0) leads to smaller frailty variance for terminal event, which results in
better prediction precision.




«= Bayesian latent class model

/' Makes by-treatment prediction by first estimating patient assignments
without unblinding.
/ Model:

Modifications on joint frailty model.

Subjects are randomly assigned to treatment group with probability = and control
group with probability 1 — m.

gi; ~ Bern(m), m ~ Beta(1, 1).

Recurrent events model: r;;(t|w;) = w;ry, (£).

Terminal event model: A;(t|lw;) = wiaﬂgi(t).

If g; = 0, baseline hazard r;, =1y, 45, = A¢. Otherwise, r;, =11, 45, = ;.

Parameters to estimate: ry, 1, 19,41, ¥, a, .
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«= Blinded vs. unblinded analysis

Prediction precision

Moder | i | zmh [ smh | 4min | smin | 6
precision precision precision precision precision precision

Pooled 21% 38% 58% 73% 83% 91%

Latent 20% 40% 56% 69% 81% 90%

Unblinded 24% 45% 60% 73% 83% 89%

Pooled analysis performs at least as well or even better in general compared to

Bayesian latent class and unblinded models.

21




== Conclusions

/' Interim prediction of recurrent events is useful for trial management with
selection of a reasonable timing.

/ Pooled analysis is generally good compared to Bayesian latent class
model and unblinded prediction.

/ Bayesian analysis provides straightforward interpretations to help
decision making.

/ Potential extensions include more general models for enroliment and
time to events, stratified recurrent event models, incorporation of
covariates and event reporting lag, and use of informative priors.
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