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Introduction to Basket Trials
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Master protocols

Master protocols are a new type of study that seeks to answer
multiple questions within a single study

• Platform trials
• Basket trials
• Umbrella trials
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Changing paradigms in cancer research

Categorisation of cancer Anti-cancer treatment

Anatomic location of the primary tumor
 
Breast cancer
Colorectal cancer
Lung cancer, etc. 

Molecularly defined subtypes
 
‘Cancer is caused by the alterations in 
normal genes.’

Cytostatic drugs
 
Targeted therapy
Immunotherapy

Cytotoxic chemotherapy
 
‘Toxic to cells’: disrupt the way cancer 
cells grow and divide
Can often affect healthy cells 
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Groundbreaking approval of immunotherapy

? Keytruda (pembrolizumab), an antibody that attaches to a
molecule called PD-1

? To treat unresectable or metastatic solid tumors with a specific
biomarker

? First FDA approval of anti-cancer treatment based on
biomarkers rather than tumour location

? Read more: www.fda.gov/newsevents/newsroom/
pressannouncements/ucm560167.htm
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Biomarker-driven designs

? Molecular profiling at the individual patient level became
feasible and affordable

? Biomarker: e.g., measurable indicator of biological properties
or genetic aberration

? More trials are now biomarker-driven

? Choice of the design and analysis relies on the biomarker’s
nature, e.g., prognostic or predictive

? Well-known types: (adaptive) enrichment designs, master
protocols

? Key objective: increased efficiency for drug development when
target-drug links exist
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Basket trials

Setting: Common characteristic (e.g. mutation) present in
multiple tumour types.

Aim: To develop targeted therapies
Solution Using biomarker(s) to screen patients and recruit

those harbouring a common characteristic (mutation)

Subgroup 1

Subgroup K

Subgroup 2

Subgroup 3

Common mutation
the drug targets

θ1

θ2

θ3

θK
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Basket trials in oncology – An example

Hyman et al. (2015) reported a basket trial, which has been designed to
evaluate the efficacy of vemurafenib in BRAF-V600.

A total of 122 patients with BRAF-V600 mutations were enrolled, of
which 95 entered the 6 modules.

All patients BRAF
V600

Cholangiocarcinoma

ECD / LCH

Colorectal

Other

Thyroid

NSCLC

Patient response rate

8/20

 1/8

6/18

0/10

2/7

6/32
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Borrowing of information between modules

With the common genomic mutation targeted by the investigational
drug, one may expect that

... some patient subgroups will respond similarly.

All patients BRAF
V600

Cholangiocarcinoma

ECD / LCH

Colorectal

Other

Thyroid

NSCLC

Patient response rate

8/20

 1/8

6/18

0/10

2/7

6/32

Potential analysis
strategies:

• Stand-alone analyses

• Complete pooling

• Borrowing of information
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Basket trials outside of oncology

Basket trials evaluate a treatment for multiple disease indications with a
common characteristic, e.g.

• a genomic biomarker;

• mechanism of drug activity;

• clinical symptom that the treatment targets

There is a great need in more efficient study designs utilising this
feature of a common characteristic outside of oncology.

• Neurodegenerative (NDD) and neuromascular diseases: drugs that
address aspects of biology or symptoms shared with other NDDs
(Cummings et al. 2022)

• Centronuclear myopathies (CNMs): The disorders share a set of
common pathologiesy and phenotypes (Fourage et al. 2021)

• Rare metabolic disorders with causes within the same pathway;

• and many more...
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Randomised controlled basket trials

Subgroup 1

Subgroup K

Subgroup 2

Subgroup 3

θ1

θ2

θ3

θK
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Introduction to Bayesian Inference
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Bayesian inference

Why being Bayesian for Basket trials?

Bayesian inference provides a formal approach for incorporating
information from additional sources, e.g.
• expert knowledge;
• historical data;
• other baskets in the trial;

Concept of Bayesian inference:

• Our (prior) knowledge about a common characteristic of
baskets is incorporated through an appropriately chosen prior.
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Example

Not RespondedResponded

• Consider a Phase II study
• Question: does a new drug provide any benefits in terms of

Response Rate (θi ) in a given disease population (basket) i ;

• Binary Outcome: Response vs No Response;
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A Bayesian Approach

• Let θi be the parameter of interest, the probability of response
(or a function of it) in basket i , that is a random variable in itself

• θi has a prior distribution π(θi) reflecting our uncertainty /
knowledge about it

• Information about nature of θi comes from the sample
y = {y1, y2, . . . , yn} that has marginal density function f (y)

• The likelihood function f (y|θi) is the distribution of y conditional
on specific values of θi .

• Bayes’ theorem:

π(θi |y) =
f (y|θi)π(θi)

f (y)
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Stand-alone (Independent) Model

Independent/Stand-alone analysis is an approach that does not
borrow information between baskets and instead conducts
stratified analysis for each.

For each basket i ,

Yi ∼ Binomial(ni ,pi),

θi = log

(
pi

1− pi

)
,

θi ∼ N(mi , νi), (1)

where mi and νi are parameters of the prior distribution (called
hyperparameters to distinguish them from the parameters of the
sampling space) for basket i .
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Stand-alone (Independent) Model

x1

Observable data

θ1

x2

xk

θ2

θk

Subtrial parameters
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Prior distribution

Assume a weakly informative prior on parameter θ in Model (1)

θ ∼ N(0.0,4)

Samples from the prior distribution in Model (1) can be obtained

Prior distribution of Theta
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4
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Likelihood function

Critical to Bayesian inference are likelihood functions. These

• serve to link the sampling space to the parameter space.

The probability:

f (y|θi) = L(θi) =
n∏

l=1

f (yl |θi)

is a general expression for a likelihood function given iid data.
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Example: Bernoulli likelihood

• The observation of 8 responses from 20 patients is a series of
Bernoulli trials with y = {0,1}. For any single trial l the
probability mass function is

f (yl | θ) = θyl (1− θ)1−yl

• The likelihood function is therefore:

L(θi) = f (y| θi) =
n∏

l=1

θyl (1− θ)1−yl = θ
∑

l yl (1− θ)n−
∑

l yl

This is the functional form of the Beta distribution.
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Note on conjugate prior and MCMC

• For the Bernoulli likelihood, if one chooses a prior in the same
function form (i.e. the Beta prior distribution), then the posterior
will be a Beta distribution again;

• This is called a conjugate prior;

• We have chosen a normal (on logit scale) prior to draw a
parallel with other (more complicated) models;

• If the prior is not conjugate (as in our case), one can use the
Markov Chain Monte Carlo (MCMC) to obtain the
(approximation) of the posterior distribution of interest;

• The samples from the Markov Chain “approximate” the
posterior distribution;
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Posterior distribution

• Assume that 20 patients were treated with 8 responding.
• Prior can be updated into the posterior (again, using MCMC)

Posterior distribution of Theta

Theta

D
e

n
s
it
y

−3 −2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Posterior distribution of Response Rate

Response rate

D
e

n
s
it
y

0.2 0.4 0.6 0.8

0
1

2
3

4

22 of 67



Summaries of the posterior distribution

The common summaries of the posterior distribution
• Mean = 0.405
• Median = 0.401
• Standard deviation = 0.104

Posterior means and variances are useful but do not tell us
everything.

The posterior distribution can give as various information about
the distribution of the parameter.

For example, “how likely that the response rate is above 25%”:

P(p > 0.25|Data,Prior) = 93.5%
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Credible Interval

A specific region which contains a given area of the posterior
density function known as a Credible Interval.

Interpretation: there is a probability of (1− α)× 100% that θ falls
within the region.

• Highest density region (HDR): smallest interval for θ which
contains (1− α)× 100% of area.

• Equal-Tailed Interval: the interval where the probability of
being below the interval is as likely as being above it.

The equal-tailed 95% credible interval in our example is
(0.211,0.616)
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Bayesian Borrowing Models
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Borrowing of information

x1

Observable data

θ1

x2

xk

θ2

θk

Subtrial parameters
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Borrowing of information

x1

Observable data

θ1

x2

xk

θ2

θk

Subtrial parameters

µ

Population mean
(with shrinkage par.)

τ

τ

τ
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Exchangeability

The random variables θ1, θ2, . . . , θK are exchangeable if

fθ1,θ2,...,θK (t1, t2, . . . , tK )
distr .
= fθπ1 ,θπ2 ,...,θπK

(t1, t2, . . . , tK ),

for any permutation (π1, . . . , πK ) of the indices {1,2, . . . ,K}.

It can be shown that
(1) i.i.d. =⇒ exchangeability,
(2) exchangeability =⇒ identically distributed.
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Bayesian hierarchical model Berry et al. 2013

A Bayesian hierarchical model (BHM) for binomial data:

Yi ∼ Binomial(ni ,pi ), i = 1, . . . , k

θi |µ, σ = log

(
pi

1− pi

)
∼ N(µ, σ2),

µ ∼ N(·, ·), σ ∼ g(·). (2)

? Hierarchical modelling assumes (similarity) of the θis

• Borrowing occurs between all baskets→ the estimates of the
response rates are shrunk towards the common mean;

• Degree of shrinkage (i.e. borrowing) controlled by the shrinkage
(borrowing) parameter, σ2.

I σ2 = 0→ complete pooling of data from other baskets;
I σ2 =∞→ no borrowing.
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Choice of hyper-prior on borrowing parameter

Based on the uncertainty of θi between different baskets, the following
classification of values of σ was proposed

• Small to moderate heterogeneity: σ = 0.125 to σ = 0.250

• Substantial to large heterogeneity: σ = 0.5 to σ = 1

Various choices of hyper-prior g(·) of σ were proposed with the most
common options being

• Inverse-Gamma
Used in the original BHM proposal but was found to lead to a poor
behaviour when σ2 is close to 0 (Cunanan et al. 2019)

• Half-Cauchy (with a moderately large scale was suggested instead),
e.g. Half-Cauchy(0,25) (Gelman 2006)

• Half-Normal with a prior standard deviation of s = 0.5 [95% interval
on σ is (0.02, 1.12)] or s = 1 [95% interval on σ is (0.03, 2.24)]
(Neuenschwander et al. 2016)
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Back to the example - I

Now instead of analysing the first basket (8/20) alone, we conduct
the analysis together with the second basket (6/18).

We use the BHM with Half-normal prior on σ2.

The summary characteristics for the first basket:

Independent BHM (s = 0.5) BHM (s = 1.0)
Mean 0.405 0.380 0.385

Median 0.402 0.377 0.381
SD 0.104 0.087 0.091

95% CI (0.211,0.616) (0.221,0.559) (0.218,0.574)
Length of CI 0.404 0.338 0.357
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Back to the example - II

Assume that we were less lucky with the second basket and
actually the number of responses was 0/18.

We again use the BHM with Half-normal prior on σ2.

The summary characteristics for the first basket:

Independent BHM (s = 0.5) BHM (s = 1.0)
Mean 0.405 0.321 0.362

Median 0.402 0.314 0.358
SD 0.104 0.102 0.105

95% CI (0.211,0.616) (0.145,0.536) (0.172,0.579)
Length of CI 0.404 0.391 0.407
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Notes

• If the baskets are truly homogeneous, the gains are higher if
smaller variance on the borrowing parameter is assumed

• However, if there is a heterogeneous basket, then borrowing
can lead to too much shrinkage of the estimates and even
increased variance of the estimate

• The choice of the distribution of the borrowing parameters σ2

should based on the trade-off between these two cases.
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Calibrated Bayesian Hierarchical Model Chu et al. 2018

The calibrated BHM, CBHM, has the same form as the BHM, but rather
than placing a prior on σ, it defines a measure of homogeneity:

σ2 = exp{a + b log(T )}

where T is the chi-squared test statistic for homogeneity:

T =
k∑

i=1

(O0i − E0i )
2

E0i
+

k∑
i=1

(O1i − E1i )
2

E1i
, (3)

where O0i and O1i are the observed failures/responses, while E0i and
E1i are the expected failures/responses.

The parameters a and b are tuned via simulations to ensure

• borrowing when all baskets have a homogeneous response

• treat baskets as independent otherwise
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Notes on Calibrated BHM

• A benefit of the tuning procedure is the increased certainty in
estimates produced by the CBHM in comparison to the BHM in the
case where all baskets are homogeneous.

• However, the method takes on a ‘strong’ definition of
heterogeneity: if the response rate in one basket is heterogeneous,
then all baskets are deemed heterogeneous, and as a result no
borrowing occurs.

• Calibration procedure depends on the chosen scenarios and the
sample sizes (!) assumed for these scenarios
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Relaxing exchangeability assumption – EXNEX
Neuenschwander et al. 2016

A Bayesian hierarchical model (BHM) assumes that the basket are
exchangeable ... with probability of 1(!).

The full exchangeability assumption is often violated. To tackle this, an
EXNEX model was proposed

1. EX (exchangeable component): with prior probability wi , basket i is
exchangeable and BHM is applied.

2. NEX (nonexchangeable component): with prior probability 1−wi , θi is
nonexchangeable with any other basket and analysed independently.

Yi ∼ Binomial(ni ,pi ),

θi = log
( pi

1− pi

)
,

θi = δiM1i + (1− δi )M2i ,

δi ∼ Bernoulli(wi ),

M1i ∼ N(µ, σ2), (EX)
µ ∼ N(·, ·),
σ ∼ g(·),
M2i ∼ N(mi , νi ). (NEX) (4)
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Back to the example - I

We again analyse the first basket (8/20) together with the second
basket (6/18).

We use the EXNEX with Half-normal prior on σ2 with s = 0.5.

The summary characteristics for the first basket:

Independent BHM (s = 0.5) EXNEX (w = 0.5)
Mean 0.405 0.380 0.395

Median 0.402 0.377 0.390
SD 0.104 0.087 0.097

95% CI (0.211,0.616) (0.221,0.559) (0.216,0.597)
Length of CI 0.404 0.338 0.381
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Back to the example - II

Again, assume that we were less lucky with the second basket
and actually the number of responses was 0/18.

We use EXNEX with Half-Normal prior on σ2 with s = 0.5.

The summary characteristics for the first basket:

Independent BHM (s = 0.5) EXNEX (w = 0.5)
Mean 0.405 0.321 0.402

Median 0.402 0.314 0.399
SD 0.104 0.102 0.105

95% CI (0.211,0.616) (0.145,0.536) (0.204,0.614)
Length of CI 0.404 0.391 0.409
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Notes on EXNEX

• EXNEX provides more flexibility: information is borrowed only
between baskets assigned to the EX component but not from those in
the NEX component;

• Weight wi is the prior probability reflecting how likely we believe
(a-priori) that the baskets are exchangeable

• It is uncommon to have strong prior information on the probability of
exchangeability, so it is suggested to fix πi = 0.5

• This prior probability is updated to a some degree based on the
homogeneity of the data but...

• The update might not be sensitive enough to the heterogeneity/
homogeneity of responses in the typically small sample sizes
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Comparing different analysis models: VE-Basket
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Can we do anything better?

Some modules may display more similar treatment effects
between themselves than with others.

Pertinent questions to the EXNEX approach:

? How many EX distributions are needed?

? What is an ‘extreme subgroup’?

All patients

Subgroup 2

Subgroup 3

Subgroup 4

Subgroup 6

Subgroup 5

Subgroup 1

Biomarker
positive
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Pairwise similarity
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Modified EXNEX Daniells et al. (2023)

The mEXNEXc model is a two-step procedure

• Remove baskets with a clearly heterogeneous response rate

min
i′
{ |p̂i − p̂i′ | } > c, i 6= i ′,

Treat such a basket as independent and its mixture weight in the
EXNEX model is set to 0.

• Find Hellinger pair-wise distance between posteriors (under
independence) of basket i and i ′: hi,i′ . Compute the weight as
average of these distances

wi =
∑

i′

1− hi,i′

# of baskets− 1
for i , i ′ ∈ S, i 6= i ′.

• Use these weights in the EXNEX
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A model averaging approach Psioda et al. (2019)

M1

M2

M3

M4

M5

Distinct response rates

1

2

2

2

3

? Construct a complete model space with all possible
reclassification of subgroups with identical pi

? Each modelM` corresponds to a distinct model stipulation
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A model averaging approach Psioda et al. (2019)

DefineMj as model j representing a permutation of basket allocation to
the EX group or NEX group.

In the EX group, results are pooled and baskets have one shared
response rate.

A weakly informative Beta prior is placed on the response rates, while a
prior on each model, f (Mj ), is also required. The posteriors f (pi |Mj )
and f (Mj |D) are computed.

BMA procedure to obtain a summary statistic for basket k . For example,
for the probability of being above 0.25

P(pi > 0.25|Data, Prior) =
∑

j

P(pi > 0.25|Mj ,D)f (Mj |D)
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Pairwise commensurability Zheng & Wason (2022)

x1

Observable data

θ1

x2

xk

θ2

θk

Subtrial parameters

θ1
θ3

θ4

θ6

θ5

θ7

θ8

θ9

θ2

Aim: to estimate the treatment effects, θi , using entire trial data.
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Robust borrowing of information

θi | θq, νqi ∼N(θq, ν
−1
qi ), ∀i = 1, . . . , k

νqi ∼wqiGamma(a1,b1)+

(1− wqi)Gamma(a2,b2), with q 6= i

• Gamma(a1,b1) correspond to substantial borrowing
• Gamma(a2,b2) correspond to limited borrowing
• Setting wqi → 0 means strong borrowing and 1 means no

borrowing.
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Robust borrowing of information
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Obtaining a collective prior

Given all pairwise commensurate priors π(θi |yq), ∀i 6= q, we then
synthesise K − 1 commensurate predictive priors.

The synthesis weights are

dqi =
exp(−w2

qi/r0)∑
q exp(−w2

qi/r0)

where
∑

q dqi = 1 and r0 is the parameters that governs how
much influence the Hellinger distance has on the weight.

The resulting collective commensurate predictive prior

θi |y−i ∼ N

∑
q 6=i

dqiλq,
∑
q 6=i

d2
qiξ

2
qi


where λq is the mean of θq|yq and ξ2

qi is the variance of θi |yq
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How to design a basket trial
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Decision-making under Bayesian inference

• We have covered various analysis methods, but how one can plan for
such a trial?

I What would be the type I error? Power?
If (some of) the baskets are not homogeneous, one can expect an
inflation of type I or/and decrease in power

I What are the properties of the estimation?

• A conventional approach is to fix the sample size (assuming no
borrowing or just based on feasibility) and then conduct simulation
studies to evaluate the operating characteristics

• An alternative would be to actually plan for the study (i.e. for the
sample size) under the assumption of borrowing

• We will cover both approaches
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Bayesian decision-making

• Decision are made based on the posterior probabilities for
the treatment effect given the clinical trial data;

For example, in a single-arm trial, one is claiming benefit if

Prob [θ ≥ p0 | Data, Prior] > c

where
• p0 is an effect threshold
• c is probability threshold (often chosen to control type I error)
• ‘Data” is the observed trial data
• “Prior” is specified prior distribution on the treatment effect.
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Bayesian decision-making: example

• Assume that the planned sample size is N = 13 patients;
• The null response rate is p0 = 0.15
• Clinically interesting response rate is p1 = 0.45

The type I error is defined as

Prob{Prob [θ ≥ p0 | Data, Prior] > c|θ = p0}

The power is defined as

Prob{Prob [θ ≥ p0 | Data, Prior] > c|θ = p1}
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Scenarios to consider

For a study with 5 baskets:

p1 p2 p3 p4 p5
Scenario 1 0.15 0.15 0.15 0.15 0.15
Scenario 2 0.45 0.15 0.15 0.15 0.15
Scenario 3 0.45 0.45 0.15 0.15 0.15
Scenario 4 0.45 0.45 0.45 0.15 0.15
Scenario 5 0.45 0.45 0.45 0.45 0.15
Scenario 6 0.45 0.45 0.45 0.45 0.45

Equal sample sizes?

Moderate treatment effect?
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Null configuration

• What would be the null hypothesis in a basket trial setting?

• With K baskets, one can consider the configuration
p1 = p2 = . . . = pk = p0 where p0 is a null response rate for the
calibration of the probability threshold c.

• This assumes that all baskets are homogeneous. What if some
of the baskets has interesting treatment effect and some null?

• Were one to calibrate under the case of the maximum type I
error, there will be no more advantages of using borrowing
(Kopp-Schneider et al. 2020)
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Results: Planned sample size Daniells et al. (2023)
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Results: Realised sample size (as in practical)
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Randomised controlled basket trials

Subgroup 1

Subgroup K

Subgroup 2

Subgroup 3

θ1

θ2

θ3

θK
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Randomised controlled basket trials

In a single-arm setting:

Yi | pi ,ni ∼ Binomial(pi ,ni)

logit(pi) = θi

In a randomised controlled setting:

Yjk | pji ,nji ∼ Binomial(pji ,nji), j = E ,C,
logit(pCi) = αi

logit(pEi) = αi + θi

where an uninformative prior is placed on αi , while
θi | µ, τ ∼ N(µ, τ2) to implement borrowing.
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Bayesian design Whitehead et al. (2008)

To observe n patients.

Patients are randomised to receive the new treatment (w.p. R) or
the control (w.p. 1− R).

Let X̄i be the mean response per treatment group i = E ,C, so that

X̄E − X̄C ∼ N
(
θ,

σ2

nR(1− R)

)
, with θ = µE − µC .

Assume known σ2.

Specify a prior on the difference in means, θ ∼ N(m, s2).

Establish efficacy if Pr(θ ≥ 0 | data, prior) ≥ η, or
futility if Pr(θ < δ | data, prior) ≥ ζ.
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Sample size formula under no borrowing

Under the assumption of no borrowing, the sample size required is

n ≥ σ2

R(1− R)

[(
zη + zζ

δ

)2

− 1
s2

]
.
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Sample size formula under commensurate prior
Zheng et al. (2023)

Recall

θi | θq, νqi ∼N(θq, ν
−1
qi ), ∀i = 1, . . . , k

νqi ∼wqiGamma(a1,b1)+

(1− wqi)Gamma(a2,b2), with q 6= i

• Setting wqi → 0 means strong borrowing

For basket-specific sample sizes n1, . . . ,nk satisfy

Rk (1− Rk )nk

σ2
k

∑
q

d2
qk

 1

s2
0q

+
Rq(1− Rq)nq

σ2
q

−1

+
wqk b1

a1 − 1
+

(1− wqk )b2

a2 − 1

−1

≥
( zη + zζ

δ

)2
∀k 6= q

• With 0 ≤ wqk ≤ 1, sample size saving can be expected
Apply Newton’s method for systems of nonlinear equations to find
n1, . . . ,nk , simultaneously
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If you are a little rusty on Newton’s method...

Sample size formulae for cases of no borrowing and commensurat
borrowing are implemented in an online R Shiny App

http://shiny.mrc-bsu.cam.ac.uk/apps/BasketTrials/.
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R Shiny App: Sample Size Formula
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An alternative strategy for borrowing Ouma et al. (2022)

Subgroup 1

Subgroup K

Subgroup 2

Subgroup 3

θ1

θ2

θ3

θK

or

μE1

μC1

μE2

μC2

μE3

μC3

μEK

μCK
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Discussion

• Strong justification (such as a common genetic make-up or
disease trait)⇒ borrowing

• In data analysis, borrowing leads to higher statistical power
than no borrowing

• If accounting for this formally in the design stage, borrowing
means a smaller sample size to reach the same desired level of
power/decision accuracy

• Inflation of type I error rates under BHM (Freidlin and Korn,
2013) and other borrowing methods
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