

Democratizing Bayesian joint models in clinical drug development: From premise to daily practice in oncology

Francois Mercier, Daniel Sabanés Bové, Craig Gower-Page, and Ulrich Beyer

Roche-Genentech, Basel

Bayesian Biostatistics conference - Bayes 2023 (Utrecht, NL)

Part I: Context

Motivation

- We want to inform the probability of success (PoS) in Phase 3 *via* extrapolation from Phase 1b/2 and historical or real-world data
- PoS is based on assurance of successful Phase 3
- To calculation the *assurance*, we need access to the assumed distribution of true effect *via* the posterior predictive distribution of the quantity of interest (e.g. HR)

Framework

Two-stage adaptive Phase 2 trial with interim analysis (I) testing monotherapy (A) vs. combination (A+B), leveraging data from an intermediate endpoint (M) and a clinical outcome (Y), from both current and historical/RWD.

		Interim (I)		Final (F)	
Source	Group	М	Y	М	Y
Current	A+B	M _{I,A+B}	Y _{I,A+B}	M _{F,A+B}	Y _{F,A+B}
	А	M _{I,A}	Y _{I,A}	M _{F,A}	Y _{F,A}
Historical/RWD	Ah	M _{I,Ah}	Y _{I,Ah}	M _{F,Ah}	Y _{F,Ah}

Auxiliary

Quantity to predict

Joint model to leverage rich M data

Two-stage adaptive Phase 2 trial with interim analysis (I) testing monotherapy (A) vs. combination (A+B), leveraging data from an intermediate endpoint (M) and a clinical outcome (Y), from both current and historical/RWD.

		Interim (I)		Final (F)		
Source	Group	М	Y	М	Y	
Current	A+B	M _{I,A+B}	Y _{I,A+B}	M _{F,A+B}	Y _{F,A+B}	
	А	M _{I,A}	Y _{I,A}	M _{F,A}	Y _{F,A}	
Historical/RWD	Ah	M _{I,Ah}	Y _{I,Ah}	M _{F,Ah}	Y _{F,Ah}	
Joint model			Auxiliary	Quantity to predict		

Borrowing to leverage rich historical/real-world data

Two-stage adaptive Phase 2 trial with interim analysis (I) testing monotherapy (A) vs. combination (A+B), leveraging data from an intermediate endpoint (M) and a clinical outcome (Y), from both current and historical/RWD.

		Inter	im (I)	Fina	al (F)	
Source	Group	М	Y	Μ	Y	
Current	A+B	M _{I,A+B}	Y _{I,A+B}	M _{F,A+B}	Y _{F,A+B}	
	А	M _{I,A}	Y _{I,A}	M _{F,A}	Y _{F,A}	
Historical/RWD	Ah	M _{I,Ah}	Y _{I,Ah}	M _{F,Ah}	Y _{F,Ah}	Borrowing

Auxiliary

Quantity to predict

Intermediate endpoint

M = Sum of Lesion Diameters

- Standardized in solid tumor indications (RECIST1.1)
- Measured repeatedly over time, at regular intervals
- Multiple advantages compared to BOR (longitudinal, continuous, etc)

Francois Mercier - Democratizing JM

Part II: Estimators

8

Tumor growth inhibition

1. Left untreated, a tumor is growing

2. Tumor shrinkage results from therapeutic interventions.

→ Merino *et al.* 2023 *JCO* (FDA CDER and OCE): "ORR is unique because it can be directly attributed to treatment, since <u>tumors generally do not regress spontaneously</u>."

Overall, SLD(t) informs both disease's dynamic and drug effect.

JM sub-models

Tumor size sub-model:

$$M_{ijk} = g(t, \psi_{ik}) + \varepsilon_{ijk} \qquad g(t, \tau)$$

$$\varepsilon_{ijk} \sim \mathbb{N}(0, \sigma_e^2)$$

$$\psi_{ik} = \{log(M_{0,ik}), logit(\phi_{ik}), log(k_{s,ik}), log(k_{g,ik})\}$$

$$\psi_{ik} = \mu_k \cdot exp(\eta_i) \qquad \boldsymbol{\eta}_i^T \sim \mathbb{N}(0, \Omega)$$

$$\mu_k = \mu + \xi_k \qquad \xi_k \sim \mathbb{N}(0, \tau)$$

 M_{ijk} : j^{th} measurement in patient i belonging to arm (or study) k

$$t, \boldsymbol{\psi}_{ik}) = M_{0,i} \cdot ((\phi_{ik}) \cdot exp(-k_{s,ik} \cdot t) + (1 - \phi_{ik}) \cdot exp(k_{g,ik} \cdot t))$$

$$Trug induced shrinkage Drug independent (re)growth Drug independent (re)g$$

Survival sub-model:

$$h(t,\psi_{ik}) = h_0(t) \cdot exp(eta \cdot f(t, \psi_{ik}))$$
 with e.g. $h_0(t) = rac{\gamma}{\lambda} \left(rac{t}{\lambda}
ight)^{\gamma-1}$ Weibull baseline hazard function

Different link functions f considered e.g.

- Predicted value or predicted slope (1st deriv) of M at time t
- Clinically relevant parameter of the tumor size model

Graphical model

(A, A+B, Ah)

Bayesian inference

- Using Stan which implements a self-tuning HMC algorithm
- Tumor size model:
 (1) Hierarchical normal model with hyper-priors for the pop-level parms
- Survival model:
 (2) Treatment is not a covariate: Treatment effect is assumed to be 100% mediated by tumor size (next talk)
 (3) Complete pooling (consequence of (2))

```
model{
 real ypred_ij;
 real yobs_ij;
 // Hyper priors definition.
 mean_mu_ks ~ lognormal(1,0.5); // log(3)
 mean_mu_kg ~ lognormal(-0.36,1); // log(0.7)
 mean mu phi ~ beta(5,5);
 sd_mu_ks ~ lognormal(0,0.5);
 sd_mu_kg ~ lognormal(0,0.5);
 sd mu phi ~ lognormal(0,0.5);
 // Priors definition.
 mu bsld ~ lognormal(55,5);
 mu_ks[sld_par_shared] ~ lognormal(mean_mu_ks, sd_mu_ks);
 mu_kg[sld_par_shared] ~ lognormal(mean_mu_kg, sd_mu_kg);
 logit(mu_phi[sld_par_shared]) ~ normal(logit(mean_mu_phi), sd_mu_phi);
 mu_ks[sld_par_separate] ~ lognormal(1,0.5);
 mu kg[sld par separate] ~ lognormal(-0.36,1);
 mu_phi[sld_par_separate] ~ beta(5,5);
 omega bsld ~ lognormal(0,1);
 omega ks ~ lognormal(0,1);
 omega_kg ~ lognormal(0,1);
 omega phi ~ lognormal(0.1);
 sigma ~ lognormal(-1.6.0.8);
 eta_tilde_bsld ~ normal(0,5);
 eta_tilde_ks ~ normal(0,5);
 eta_tilde_kg ~ normal(0,5);
 eta tilde phi ~ normal(0,5);
 p ~ gamma(2, 0.5);
 1 / lambda ~ lognormal(0, 5);
 beta ~ normal(0,5);
 gamma ~ normal(0,5);
 beta os cov ~ normal(0, 5);
 target += sum(log lik);
```


Part III: Example

13

Motivating example (1/2)

Question:

In an indication XYZ and with a backbone A, should we prioritize to initiate Ph3 activities to test A+B vs. A?

Primary endpoints: Objective response rate, safety

Secondary endpoints: Progression free survival (PFS), Overall survival (OS), Duration of response (DOR), Disease control

Motivating example (1/2)

Question:

In an indication XYZ and with a backbone A, should we prioritize to initiate Ph3 activities to test A+B vs. A?

Primary endpoints: Objective response rate, safety

Secondary endpoints: Progression free survival (PFS), Overall survival (OS), Duration of response (DOR), Disease control

Motivating example (2/2)

	A (N= 29)	A+B (N=.30)	Ah(1) (N= 315)	Ah(2) (N= 467)
N w/ baseline SLD	29	30	314	465
N OS eval.	29	30	309	457
Baseline SLD (mm)	69.9 (46.9)	50.8 (28.5)	74.8 (50.7)	66.6 (44.4)
Liver Met. (Yes)	0 (0%)	0 (0%)	99 (31%)	138 (30%)
ECOG (1+)	16 (55%)	22 (73%)	196 (62%)	249 (53%)
Albumin (g/L)	41.0 (3.7)	40.5 (4.3)	38.3 (4.9)	39.1 (5.2)
LDH (U/L)	212 (83.8)	230 (96.2)	284.8 (205.2)	284.8 (188.2)
CRP (mg/L)	25.6 (36.9)	16.5 (21.4)	33.3 (41.4)	31.9 (41.5)
NLR	5.23 (5.18)	4.33 (5.2)	5.4 (5.1)	4.8 (4.4)

Current study

Note: Continuous Variables: Mean (SD); Categorical: N (%)

Historical control

Predicted OS

Predictions based on IA data + historical data borrowing

- This JM describes OS using log-logistic baseline hazard + slope as link function
- Predicted survival curves on 0-2 year interval are precise and largely overlapping
- No evidence of A+B>A so far (assurance close to 0)
- Only 15 data points for survival in group A (vs. 30 in A+B) → too sparse

Jmpost Filling a gap

https://genentech.github.io/jmpost/

	{JM}	{JMbayes2}	{INLAjoint}	{rstanarm}	{jmpost}
Nonlinear mixed-effect model	No	No	No	No	Yes
Bayesian inference	No	Yes	Yes	Yes	Yes
Algorithm	Adaptive Gauss-Hermite	Custom MCMC	INLA	self-tuning HMC (Stan)	self-tuning HMC (Stan)

Note: {brms} does not support the fitting of Joint Models.

Disclaimer: Under active development; not a stable API yet.

Concluding remarks

Presentation to clinical team members

- Cross-functional team
- 5-min to convince
- Build trust; MDs trust *data* primarily
- Align beforehand, in particular: Assumptions \rightarrow which bias to concede ? e.g. time-varying HR, NPH, link function, ...
- Commitment to make this happen.

Thank you for your attention

francois.mercier@roche.com

BACK-UP

Joint TGI-OS models' selected history

circa	TGI-0S	JM	Other
2020		Kerioui <i>et al. Stat in Med</i> (Bayesian TGI-OS) 💠 Tardivon <i>et al. CPT</i> (TGI-OS) 💠	
	Bruno et al. CPT (TGI-OS for prediction)		Carpenter et al. JSS (Stan)
2010	Claret <i>et al. JCO</i> (TGI-OS 2stgM) 🔹 Stein <i>et al.</i> TheOnco (TGI-OS 2stgM)		Eisenhauer <i>et al. EJC</i> (RECIST)
2000		Law et al. Biostatistics (NLME sub-model; PSA-OS)	
		Hu <i>et al. Biometrics</i> (Bayesian) Tsiatis <i>et al. JASA</i>	
1990	Kaplan et al. Cancer (Decay and growth expM; PSA)		
	Norton Cancer Res (TGI expM in clin dev)		

Introducing jmpost

Model Specification

Introducing jmpost (cont'd)

Data Specification

*formula = Surv(t, event) ~ cov1 + cov2 + ...

Disclaimer: Under active development; not a stable API yet.

Introducing jmpost (cont'd)

MCMC sampling

Additional sampling options for cmdstanr

Disclaimer: Under active development; not a stable API yet.

Training program (for statisticians)

- 1. Introduction to the statistical methodology
 - a. Joint Models
 - b. Bayes 101
 - c. Decision making
- 2. Previous case studies
 - a. Kerioui paper example
 - b. Clinical trial example
- 3. Implementation
 - a. Stan high-level overview
 - b. jmpost structure
 - c. Rerunning a case study with jmpost

Doing now what patients need next