A Bayesian Perspective on the Two-Trials Rule

Leonhard Held and Samuel Pawel

Bayesian Biostatistics Conference 2023

October 25, 2023

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

 \rightarrow One-sided $p_1, p_2 \leq \alpha = 0.025$ in two independent trials.

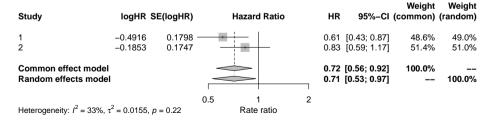
- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- \rightarrow One-sided $p_1, p_2 \leq \alpha = 0.025$ in two independent trials.
- → Overall T1E rate is $\alpha^2 = 0.025^2 = 0.000625$.

- FDA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."


- \rightarrow One-sided $p_1, p_2 \leq \alpha = 0.025$ in two independent trials.
- \rightarrow Overall T1E rate is $\alpha^2 = 0.025^2 = 0.000625$.
- \rightarrow Bound on partial T1E rate is $\alpha = 0.025$.

Example: The RESPIRE Trials

Chotirmall and Chalmers (2018)

- The RESPIRE 1 and 2 trials evaluated 32.5 mg ciprofloxacin dry powder inhalation (DPI) for the treatment of non-cystic fibrosis bronchiectasis.
 - RESPIRE 1 largely enrolled across Europe, North and South America, Australia and Japan
 - RESPIRE 2 focused on Asia and Eastern Europe
- Outcome: Frequency of exacerbations within 14-days

- Result:
$$p_1 = 0.003$$
, $p_2 = 0.14$

Null Hypotheses and Type-I Error Rates

Study-specific null hypotheses H_0^1 : $\theta_1 = 0$ and H_0^2 : $\theta_2 = 0$

Null Hypotheses and Type-I Error Rates

Study-specific null hypotheses H_0^1 : $\theta_1 = 0$ and H_0^2 : $\theta_2 = 0$

1. The intersection null hypothesis

$$H_0^1 \cap H_0^2$$

is a point null hypothesis.

 \rightarrow Overall T1E rate

Null Hypotheses and Type-I Error Rates

Study-specific null hypotheses H_0^1 : $\theta_1 = 0$ and H_0^2 : $\theta_2 = 0$

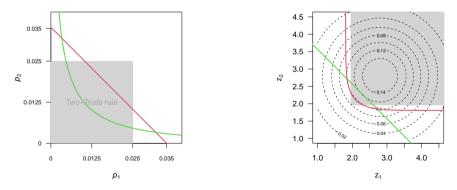
1. The intersection null hypothesis

$$H_0^1 \cap H_0^2$$

is a point null hypothesis.

- → Overall T1E rate
- 2. The no-replicability or union null hypothesis

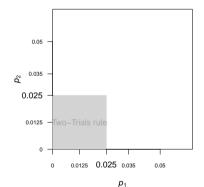
 $\mathit{H}_0^1 \cup \mathit{H}_0^2$


is a composite null hypothesis.

→ Partial T1E rate

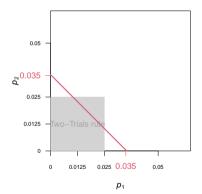
Beyond the Two-Trials Rule

Two alternatives with same overall T1E rate


- 1. Edgington's method: $p_1 + p_2 \le \sqrt{2} \alpha \approx$ 0.035 (Edgington, 1972)
- 2. Pooled-trials rule: $z_1 + z_2 \ge \sqrt{2} \, z_{1-\alpha^2} \approx 4.56$ (Senn, 2021)

Contour lines represent the distribution of Z_1 and Z_2 under H_1 for 80% power.

Bounds on Partial T1E Rate

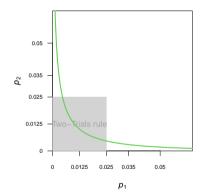

Overall T1E control at level 0.025²

Bounds on Partial T1E Rate

Overall T1E control at level 0.025²

Method	Bound on partial T1E rate
Two-trials rule	0.025
Edgington	0.035

Beyond the Two-Trials Rule


Leonhard Held*

University of Zurich Epidemiology, Biostatistics and Prevention Institute (EBPI) and Center for Reproducible Science (CRS) Hirschengraben 84, 8001 Zurich, Switzerland

11th July 2023

Bounds on Partial T1E Rate

Overall T1E control at level 0.025²

Method	Bound on partial T1E rate
Two-trials rule	0.025
Edgington	0.035
Pooled	1.00

Beyond the Two-Trials Rule

Leonhard Held*

University of Zurich Epidemiology, Biostatistics and Prevention Institute (EBPI) and Center for Reproducible Science (CRS) Hirschengraben 84, 8001 Zurich, Switzerland

11th July 2023

Project Power

Assume both trials are powered to detect common true effect:

	Trial power (%)	
Method	80	90
Two-trials rule	64	81

Project Power

Assume both trials are powered to detect common true effect:

	Trial power (%)	
Method	80	90
Two-trials rule	64	81
Edgington	68	84

Project Power

Assume both trials are powered to detect common true effect:

	Trial po	wer (%)
Method	80	90
Two-trials rule	64	81
Edgington	68	84
Pooled	77	91

A Bayesian Perspective

- Frequentist focus on error rates
- A Bayesian quantifies the evidence in terms of the Bayes factor BF:
 - 1. Alternative against intersection null
 - 2. Alternative against union null
- We compare the three methods based on the smallest Bayes factor that can lead to success: min BF
- $-\min_{success}$ BF should be large to ensure sufficient evidence under success.

Bayes Factors

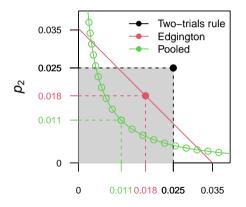
Intersection null

- Idea: Use Bayes factors based on test statistics Z_1 , Z_2
- Assume: Same design for both trials \rightarrow same power, same sample size
- ightarrow Sufficient statistic $\overline{Z} = (Z_1 + Z_2)/2$ with

 $\begin{aligned} \overline{Z} \mid H_0 &\sim & \mathsf{N}(0, 1/2) \text{ under intersection null} \\ \overline{Z} \mid H_1 &\sim & \mathsf{N}(\mu, 1/2 + \tau^2) \text{ under } H_1 \\ \mathsf{BF} &= & f(\overline{Z} \mid H_1) / f(\overline{Z} \mid H_0) \end{aligned}$

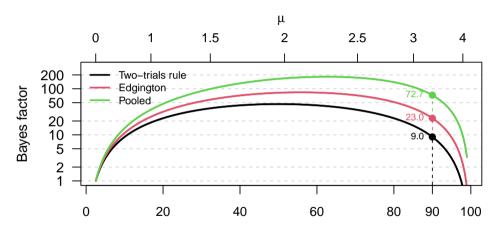
 $\mu = \Phi^{-1}(1 - \alpha) + \Phi^{-1}(1 - \beta)$ is a function of the individual trial power $1 - \beta$.

- Implicit normal prior with variance τ^2 on μ
- RESPIRE with 90% power:


 BF
 Prior

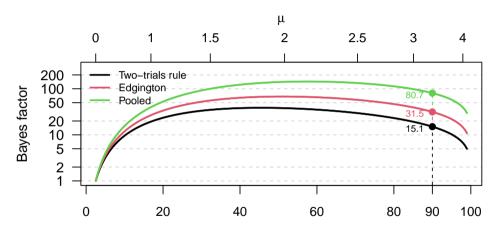
 6.0
 point prior ($\tau^2 = 0$)

 11.0
 normal prior ($\tau/\mu = 0.25$)


Smallest Bayes Factor That Can Lead to Success Intersection null

Where is the smallest Bayes factor that can lead to success?

Smallest Bayes Factor That Can Lead to Success


Intersection null Bayes factors with point prior

Individual Trial Power (in %)

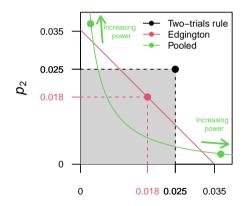
Smallest Bayes Factor That Can Lead to Success

Intersection null Bayes factors with normal prior

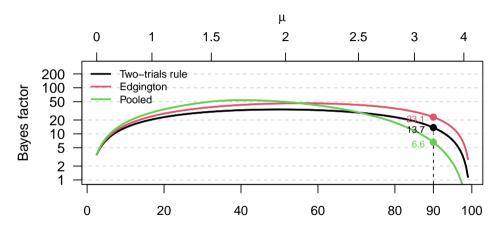
Individual Trial Power (in %)

Bayes Factors Union null

- Prior-predictive distribution under union null:

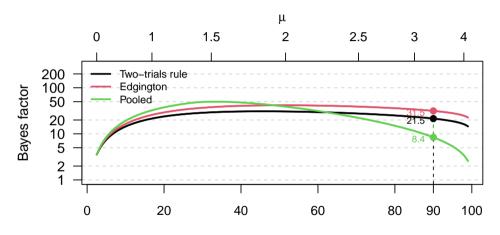

 $\begin{array}{rcl} Z_1, Z_2 & \sim & \mathsf{N}(0,1) \text{ with probability 1/3} \\ Z_1 & \sim & \mathsf{N}(\mu,1+\tau^2) \text{ and } Z_2 \sim \mathsf{N}(0,1) \text{ with probability 1/3} \\ Z_1 & \sim & \mathsf{N}(0,1) \text{ and } Z_2 \sim \mathsf{N}(\mu,1+\tau^2) \text{ with probability 1/3} \end{array}$

- RESPIRE with 90% power:


BF	Prior
3.4	point prior
7.5	normal prior

Smallest Bayes Factor That Can Lead to Success

Where is the smallest Bayes factor that can lead to success?



Smallest Bayes Factor That Can Lead to Success Union null Bayes factors with point prior

Individual Trial Power (in %)

Smallest Bayes Factor That Can Lead to Success Union null Bayes factors with normal prior

Individual Trial Power (in %)

Idea: Compare $\min_{success} BF$ to ensure sufficient evidence under success

Idea: Compare $\min_{success} BF$ to ensure sufficient evidence under success

1. Edgington always better than two-trials rule

Idea: Compare $\min_{success} BF$ to ensure sufficient evidence under success

- 1. Edgington always better than two-trials rule
- 2. Pooled-trials-rule best for intersection null, but not for union null

Idea: Compare $\min_{success} BF$ to ensure sufficient evidence under success

- 1. Edgington always better than two-trials rule
- 2. Pooled-trials-rule best for intersection null, but not for union null
- 3. Edgington best under union null for reasonably powered alternatives

References

- Chotirmall, S. H. and Chalmers, J. D. (2018). RESPIRE: breathing new life into bronchiectasis. <u>European</u> <u>Respiratory Journal</u>, 51(1):1702444.
- Edgington, E. S. (1972). An additive method for combining probability values from independent experiments. The Journal of Psychology, 80:351–363.

Held, L. (2023). Beyond the two-trials rule. arXiv preprint.

Senn, S. (2021). Statistical Issues in Drug Development. John Wiley & Sons, Chichester, U.K., third edition.