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Motivating Example
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Motivating Example

Motivated by a problem in industry

Identify optimal combination of two agents dopt = (d1, d2)opt across
continuous dose combination space dopt ∈ D where D ⊂ R2

Optimality defined w.r.t. efficacy – continuous measure

Both agents were approved individually – used for a long time

The agents are well tolerated
Assume minimal toxicity → do not consider dose
escalation/de-escalation rules

Response heterogeneity across binary covariate Z expected
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Dose-Finding

Standard dose-finding → ignore covariate information

Find optimal dose combination in “one size fits all” trials: dopt ∈ D
Personalized dose-finding → optimal dose combination may depend
on covariates Zp for p = 1, 2, ...,P

Cartesian product of the levels of these Zp form k = 1, ...K strata
Find optimal dose combination conditional on being in stratum k:
dopt ∈ D | zk

Challenge: standard dose-finding methods not easily extended to
personalized case

Parametric models require potentially large number of
treatment-covariate interactions
Hard to estimate given sample size limitations in early phase trials
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Proposed Method

Small sample sizes lead to challenges in both standard and
personalized dose-finding

Proposed method has the following:

1 Dose-response surface model is parsimonious, yet flexible – captures
non-monotonic behavior

2 Sequential design explores entire dose combination space in
principled way – allows for early stopping

3 Straightforward extension from standard to personalized dose-finding

Method: response surface modeled by Gaussian process (GP) and
Bayesian optimization methods utilized to guide sequential dose
exploration
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Bayesian Optimization
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Bayesian Optimization

Bayesian optimization globally optimizes expensive-to-evaluate
objective functions f (d) (Gramacy, 2020; Garnett, 2023)

f (d): continuous efficacy or utility surfaces
Commonly assume minimization problem:

argmin
d∈D

f (d)

Model f (d) with GP and choose d(c+1) as the one which maximizes
acquisition function α(d̃ | D):

d(c+1) = argmax
d̃∈D

α(d̃ | D)

Repeat until sample size limits reached or early stopping criteria
satisfied
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Gaussian Process Regression

GP is a stochastic process – considers any finite collection of
observations as being distributed multivariate normal

GP prior placed on the (latent) objective function

f (d) ∼ GP(m(d),K(d,d′))

m(d): mean function
K(d, d′): kernel function

We use zero-mean functions m(d) = 0 and flexible anisotropic
squared exponential kernel function

Importantly, posterior known in closed form → another multivariate
normal (Williams and Rasmussen, 2006; Murphy, 2023)
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Standard Dose Finding

Collect data D → fit GP

Next dose combination: maximizer of acquisition function, α(d̃ | D):

d(c+1) = argmax
d̃∈D

α(d̃ | D).

Expected Improvement (EI) balances trade-off between

exploring regions in D where f (d) imprecisely estimated
exploiting regions in D with desirable values of f (d)

EI of d̃ is expected improvement over current best observation f ∗:

αEI (d̃ | D) = E[max(0, f ∗ − f (d̃)) | D, d̃].

If GP used to model f (d), EI is available in closed form(Jones et al., 1998)

Quick to calculate/optimize

Repeat until algorithm termination
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Personalized Dose Finding

Incorporate additional covariate information Z into kernel function

f (d, zk) may differ across strata, so there may exist stratum-specific
current best observation values f ∗k

Calculate stratum-specific EI, αEI (d̃ | Dϵ,Zk), known analytically:

αEI (d̃ | D, zk) = E[max(0, f ∗k − f (d̃, zk)) | D, zk ]

Next dose combination within stratum k :

d
(ck+1)
k | zk = argmax

d̃∈D
αEI (d̃ | D, zk)

Repeat until algorithm termination
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Recommended Dose Combination

Algorithm termination → maximum sample size reached OR early
stopping criteria satisfied

Proposed stopping criteria

Stop when little improvement expected over current best
→ maxd̃∈D αEI (d̃ | D) < δ AND
After some exploration of D → when n > nSTOP

At termination

1 Sample from p(dopt | D) OR

2 Point estimate: d̂opt ← argmind̃ E [f | D, D̃]

We choose this → computational demands of simulations
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Simulation Study
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Performance Metrics

Goal: compare performance of standard and personalized dose-finding
approaches under 1) no response heterogeneity and 2) response hetero-
geneity

1 How well algorithms capture location of true dopt

Expected Euclidean distance between recommended d̂opt and true
dopt

2 How well algorithms capture true optimal value fopt
Expected root posterior squared error loss (RPSEL) of pointwise

posterior p(f | D, d̂opt)

3 How well point estimates converge to true optimal value fopt

Expected posterior mean estimates E [f | D, d̂opt ]
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No response heterogeneity - no early stopping
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Response heterogeneity - no early stopping
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Motivating Example

Identify dopt ∈ D where D ⊂ R2

Agents well tolerated - assume minimal toxicity setting

Objective function f (d) corresponds to continuous efficacy response

Expect response heterogeneity across binary covariate Z

New doses expensive to engineer → stop early if possible

Goal: compare performance of standard and personalized dose-finding
approaches under a variety of scenarios
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Motivating Example - early stopping
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Discussion and future work
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Takeaways

No-response heterogeneity

personalized algorithm slightly less efficient
equivalent to standard algorithm by end of trial

Response heterogeneity

poor performance of standard algorithm
incapable of separately modeling strata

Personalized algorithm feasible even with small sample sizes

Final design of motivating example - around 50 participants for two
strata
More strata may require more data
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Future Work

Extend to higher-grade toxicity setting → incorporate dose
escalation/de-escalation rules

Extend to non-categorized continuous covariates

Investigate use of different kernel and acquisition functions
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