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Disclaimers

The information provided during this presentation does not constitute legal advice. 

PharmaLex, and its parent Cencora, strongly encourage the audience to review 

available information related to the topics discussed during the presentation and to rely 

on their own experience and expertise in making decisions related thereto. Further, the 

contents of this presentation are owned by PharmaLex and reproduction of the slides 

used in today’s presentation is not permitted without consent of PharmaLex.

Disclaimer: all examples deal with simulated clinical trial settings. 

No conflict of interest by the presenter.



Adaptive designs in clinical trials
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Pre-planned changes can include (but are not limited to)(7)

Refine sample-size

Drop doses that emerge as less promising

Stop trial at an early stage for success or lack of efficacy

Identify patients most likely to benefit from particular doses 

Possible advantages

More efficient, informative and ethical

Save resources, time and money 

Fewer patients required

Source: Pallmann10



Key points of this presentation
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Simulate what-if scenarios more efficiently using INLA

Some simulation algorithms take several hours (or days). 

Rerunning them to explore what-if scenarios can be time-consuming.

INLA is a fast and accurate alternative to MCMC.

Comparison of INLA and STAN within Bayesian adaptive designs 

Showcase results and computational time within three endpoints.
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Keystones of INLA
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Integrated nested Laplace approximation approach 

Suitable for Bayesian inference

Relies on a generalization of the Laplace approximation: estimate a Gaussian distribution, using 

the first 3 terms of a Taylor series

Applicable to latent Gaussian models: prior models that use normally distributed random effects to 

explicitly model dependence among samples(8) 

Why INLA if MCMC exists?

1952: first MCMC algorithm designed by Metropolis et al. for use in statistical physics 

1990 – recently: popularization MCMC for Bayesian analysis due to increased computational power

MCMC is computationally intensive: Markov chain required, whose convergence must be diagnosed. 

INLA methods have now been generalized to handle models with Gaussian random effects



INLA vs MCMC
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Advantages of INLA

INLA is a deterministic algorithm 

Computationally faster than MCMC(2)

− No burn-in or multiple chains needed 

− No inherent autocorrelations

− Does not suffer from slow convergence and 

poor mixing

Possible Disadvantages of INLA

Unlike MCMC, cannot be made arbitrarily accurate 

simply by running the algorithm longer

Accuracy in any given problem is hard to judge since 

its justification relies on asymptotic arguments 

− Accuracy gets better with bigger sample sizes, 

however, additional data collection not always 

possible

First 100 iterations of a single chain from a random walk Metropolis 

Hastings algorithm, generated by Matt Kumar. Animation is slowed 

down for better visuals.

https://rpubs.com/matt-kumar/mcmc


Keystones of INLA

R-INLA vs R-STAN in clinical trials

Binary

8

Time-to-event

Continuous longitudinal



Binary Endpoint
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Background

Logistic regression is used for binary endpoints

Examples include 

− Successful replacement of a hip 

− Achieving a preset level of change, like 

increase in hemoglobin by 2g/dL 

Patients received either placebo or a treatment

Success (1) or failure (0) rate of treatment recorded

SubjID Treatment Result

1 0 0

⋮ ⋮ ⋮

68 1 1



Binary Endpoint
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Comparison STAN and INLA

Simulate 1000 times a dataset and model the success rates 

through the logistics function 𝑝 𝑥 =
exp(𝛼+𝛽𝑥)

1+exp(𝛼+𝛽𝑥)
with 

− 𝛼 the intercept: base rate of placebo 

− 𝛽 difference in rate of treatment group w.r.t. placebo.

Parameter of interest is 𝛽.

− 𝑥 indicator for 0 = placebo and 1 = treatment

Plot is one iteration of quantiles obtained by STAN and INLA 

models

− Red dot: true value of 𝛽

− Blue and red lines: 2.5% to 97.5% quantile estimates for 𝛽



Binary Endpoint
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Results

Here, 𝛽 is of interest, as it shows the difference is rates between the two strata 

Coverage calculated as  
# 95% quantiles containing 𝛽

# simulations

Bias calculated as the mean መ𝛽 − 𝛽 , where መ𝛽 is the true value and 𝛽 the estimated change

nsim Algorithm Sys.time (sec)*

1000 INLA 726 (~12 min)

1000 STAN 978 (~16 min)

Parameter Algorithm Coverage (%) Mean bias

beta INLA 95 0.041

beta STAN 94 0.043



Keystones of INLA

R-INLA vs R-STAN in clinical trials

Binary

12

Time-to-event

Continuous longitudinal



Time-to-event Endpoint

© PharmaLex 13

Background

1000 patients with a disease were followed over time

Time = survival or censoring time 

Status = censoring status 

Complication occurred = 0 none, 1 yes

Note: INLA estimates may struggle with numerical overflow when observed times are large 

Solution: re-scale time before fitting any model, e.g. time=time/max(time)

Subject Time Status Complication

1 0.027 1 1

2 0.430 0 0

3 0.712 1 0

⋮ ⋮ ⋮ ⋮

1000 0.270 1 1



Time-to-event Endpoint
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Model

Data modelled through Weibull probability density function 𝑓 𝑥 =
𝛼

𝜎

𝑥

𝜎

𝛼−1
exp −

𝑥

𝜎

𝛼

where 𝑥 is time, 𝛼 the shape parameter and 𝜎 the scale parameter 

Shape (or slope) parameter 𝛼 is of most importance: indicator 

whether failure rate is increasing, constant or decreasing

True 𝛼 = 0.7

Survival probability of patients with a disease 

Stratum = 0:  No complication during follow-up phase

Stratum = 1:  Complication occurred



Time-to-event Endpoint
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Results

Simulate 1000 times a dataset and model the estimates 

Coverage calculated as 
# 95% quantiles containing 𝛼

# simulations

Bias calculated as the mean ො𝛼 − 𝛼 , where ො𝛼 is the 

true parameter and 𝛼 is estimated value

nsim Algorithm Sys.time (sec)

1000 INLA 984 (~16 min)

1000 STAN 23034 (~6 h)

Parameter Algorithm Coverage (%) Mean bias

alpha INLA 95 0.007

alpha STAN 98 0.0003
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Continuous longitudinal Endpoint
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Study setup

Simulate data according to a model

4 treatment groups: placebo and low, medium, and high doses

Measure disease severity (1 – 100%) over several weeks

16

Interim Analysis

Placebo (n)

Final Analysis

0

Baseline

Medium dose (n)

Low dose (n)

High dose (n)

36



Continuous longitudinal Endpoint
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Model the response by

𝑌𝑖𝑗𝑘 = 𝛽0 + 𝛽1 + 𝜃𝑘 + 𝑏1𝑖 × 𝑡𝑗 + 𝑏0𝑖 + 𝜖𝑖𝑗𝑘 ,

where 

− 𝑌𝑖𝑗𝑘 is disease severity for subject 𝑖, at time 𝑗, taking 

treatment k

− 𝛽0 is the intercept for the placebo group

− 𝛽1 is the slope for the placebo group

− 𝜃𝑘 change in slope w.r.t. placebo group in treatment 

group 𝑘 = low, med, high. Define 𝜃PBO ≡ 0

− 𝑡𝑗 time in weeks for measurement point 𝑗

− 𝑏0𝑖~𝑁(0, 𝜏0
2) is the random intercept for patient 𝑖

− 𝑏1𝑖~𝑁(0, 𝜏1
2) is the random slope for patient 𝑖

− 𝜖𝑖𝑗𝑘~𝑁(0, 𝜎
2) is a random noise term

Here, 𝜃𝑘 is the parameter of interest
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Continuous longitudinal Endpoint

Results

Coverage calculated as  
# 95% quantiles containing 𝜃

# simulations

Bias calculated as the mean 𝜃𝑘 − 𝜃𝑘 , where 𝜃 is 

estimated change in slope w.r.t. PBO minus true 𝜃 for 
dose 𝑘

Discussion

60 simulations is limited but run times of STAN is more 
than 11 hours! 
Not feasible to explore many scenarios for adaptive 
designs

INLA’s run time is 442 times faster than STAN, while 
yielding similar results

Inclusion of random effects affects model complexity and 
therefore computing time

nsim Algorithm Sys.time (sec)

1000 INLA 1705 (~28 min)

60 STAN 41520 (~11 h)

Dose Algorithm Coverage (%) Mean 

bias

Low INLA 98 0.02

Low STAN 93 0.02

Medium INLA 97 0.01

Medium STAN 96 0.03

High INLA 93 0.03

High STAN 98 0.04



Continuous longitudinal Endpoint
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Discussion

100 simulations is limited; not enough to distinguish between INLA’s and STAN’s coverage.

If true coverage probability is 95%, then error is 
0.95×0.05

100
≈ 0.022.

Thus, its approximate 95% confidence interval is 𝜇 ± 2𝜎 → 0.087.

Coverage probabilities must be between 0 and 1

In practice, 1000 simulations are preferable: error would be 
0.95×0.05

1000
≈ 0.0068

95% CI width would be 0.0275, enough to distinguish between coverage rates

STAN simulations were also employed on a 32-core server. 

Coverage and bias showed marginal differences (.01). Computing time was ~6 hours.
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Summary  

Computation time and parameter estimates compared for INLA and STAN models

Three common clinical trial settings explored: continuous longitudinal, time-to-event and binary

Performances

Computation time of INLA is faster than STAN – sometimes marginally, sometimes substantially

Parameter estimates of both algorithms are similar, as shown by the 95% quantile ranges. 

However, the limited number of simulations play a role in this

Coverage is about ~95% for both algorithms

Bias differs depending on the modeling scenario

Discussion

Limited number of iterations of the simulation affects the precision

Factors contributing to the speed of convergence may include, but are not limited to, initial values, 

model complexity (especially random effects), and data type

Several studies have made a comparison between INLA and STAN(1, 2, 3, 6), showing similar results



INLA vs MCMC
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Limitations INLA

MCMC can fit any hierarchical model

INLA focusses on models which latent effects 

arise from a Gaussian Markov random field

Consequently, INLA cannot fit the following:

Mixture models

Double hierarchical models

Any model where the random effects are 

not Gaussian (Student’s T, Gamma, …)

Solve the limitation by combining INLA and 

MCMC(6, 10)

Source: Kumar(9)
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INLA MCMC

Image Adapted from AB Tasty(4, 5)
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Source: Cytel2

Computation time INLA vs MCMC for different Bayesian clinical trial designs on a 

standard PC (Intel Core i7, 16GB RAM)

https://www.cytel.com/blog/inla-vs-mcmc?utm_medium=social&utm_source=linkedin
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Laplace approximation is an old technique for the approximation of integrals 

𝐼𝑛 = න
𝑥

exp 𝑛 𝑓 𝑑𝑥

1. Approximate the target with a Gaussian

2. Match the mode and the curvature at the mode.

3. By interpreting f(x) as the sum of log-likelihoods and x as the unknown 
parameter, the Gaussian approximation will be exactas n→∞,if the central 
limit theorem holds.

Let 𝑥0 be the point in which 𝑓(𝑥) has its maximum. Then

𝐼𝑛 ≈ න
𝑥

exp 𝑛(𝑓 𝑥0 +
1

2
𝑥 − 𝑥0

2𝑓′′ 𝑥0 𝑑𝑥

= exp 𝑛𝑓 𝑥0
2𝜋

−𝑛𝑓′′(𝑥0)
= ሚ𝐼𝑛

Laplace approximations 
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A Laplace approximation is used to estimate a Gaussian 
distribution, using the first 3 terms of a Taylor series

𝑓 𝑥 = 𝑓 𝑎 +
𝑓′ 𝑎

1!
𝑥 − 𝑎 +

𝑓′′ 𝑎

2!
𝑥 − 𝑎 2 +

𝑓′′′ 𝑎

3!
𝑥 − 𝑎 3 +⋯

E.g. For a basic parabola with 𝑦 = 𝑥2, expanding around 𝑎 = 2:

𝑓 𝑥 = 𝑥2

𝑓′ 𝑥 = 2𝑥
𝑓′′ 𝑥 = 2
𝑓′′′ 𝑥 = 0

Therefore: 𝑓 𝑥 = 𝑥2 = 22 + 2 2 𝑥 − 2 +
2

2
𝑥 − 2 2

Thus, a function at point 𝑎 can be expanded into a sum of terms. 
Using the first few terms serves as an approximation.

Laplace approximations 
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LGMs are flexible prior models which explicitly model dependence among samples and which allow for 

efficient learning of predictor functions and for making probabilistic predictions

In these models, the response is assumed to belong to an exponential family, where the mean 𝜇𝑖 is 

linked to a structured additive predictor 𝜂𝑖 through a link function 𝑔(·), so that 𝑔(𝜇𝑖) = 𝜂𝑖

ηi accounts for effects of various covariates in an additive way:

𝜂𝑖 = 𝛼 +

𝑗=1

𝑛𝑓

𝑓 𝑗 𝑢𝑗𝑖 +

𝑘=1

𝑛𝛽

𝛽𝑘𝑧𝑘𝑖 + 𝜖𝑖

{𝑓 𝑗 ⋅ }s are unknown functions of the covariates 𝐮, the 𝛽𝑙 s represent linear effect of covariates 𝐳 and 

𝜖𝑖s are unstructured terms. 

Source: Alvares, D., Rustand, D., Krainski, E. T., van Niekerk, J., & Rue, H. (2022). Bayesian survival analysis with INLA. arXiv preprint arXiv:2212.01900.



Combining MCMC and INLA

32

Gómez-Rubio, V., & Rue, H. (2018). Markov chain Monte Carlo with the integrated nested 

Laplace approximation. Statistics and Computing, 28, 1033-1051.


