LEAP: The latent exchangeability prior for borrowing information from historical data

Ethan M. Alt*

UNC GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

*with X. Chang, X. Jiang, Q. Liu, M. Mo, H. A. Xia, and J. G. Ibrahim

Slides available online

These slides are available on my Web site, accessible from scanning the QR code below.

Figure: Scan this QR code for a link.

Motivation

Case Study: The ESTEEM Trials

- The ESTEEM I [5] and ESTEEM II [5] trials were two phase 3 clinical trials for patients with moderate-to-severe plaque psoriasis.
- Patients were randomized 2:1 to Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, or placebo.
- The ESTEEM I trial randomized 562 subjects to Apremilast and 282 subjects to placebo.
- In the ESTEEM II trial, 274 subjects were randomized to Apremilast arm and 137 were assigned to placebo.
- We wish to borrow the most relevant (i.e., exchangeable) patients from the ESTEEM I trial.

Current approaches

Propensity Score Approaches

- In the Bayesian information borrowing literature, propensity score (PS) integrated priors have been proposed.
- The PS is defined as the conditional probability a subject enrolls in the current study given covariates, i.e.,

$$e_i = \Pr(S_i = 1 | \mathbf{x}_i)$$
 and $e_{0i} = \Pr(S_{0i} = 1 | \mathbf{x}_{0i})$,

where S_i , $S_{0i} \in \{0, 1\}$ denotes the study ID (1 = current; 0 = historical) for the current and historical data participants, respectively.

The goal behind PS methods is to use matching, weighting, or stratification techniques to assess exchangeability.

Propensity Score Approaches

- PS approaches are typically two-stage approaches:
 - Design stage
 - The PS is estimated.
 - A PS method (e.g., matching, stratification) is applied.
 - Individuals who are matched or within a stratum are considered exchangeable.
 - 2 Analysis stage
 - A treatment-only model is estimated.
 - Bayesian approaches integrate the matched or stratified data with popular priors like power priors [2], commensurate priors [1], and meta-analytic predictive (MAP) priors [7].

Propensity Score Approaches

- In the causal inference (CI) literature, it is shown that PS approaches result in balance in the baseline covariates, so that exchangeability can be assumed.
- The underlying DAG when using PS approaches in clinical trials lacks real-world intuition.
- In many cases, it is more desirable to condition on covariates.
- Moreover, these approaches treat the PS as known and fixed, which is at odds with Bayesian thinking.
- In fact, in the causal inference literature, Bayesian approaches that incorporate propensity scores have been criticized due to the lack of a Bayesian justification for the PS model (i.e., a joint model for the outcome and PS).

LEAP: The general methodology

The Latent Exchangeability Prior

- The LEAP is predicated under the assumption that the historical data follow a finite mixture model (FMM), where one of the components of the mixture is the same density as the current data.
- Let $\theta = (\theta_1, \dots, \theta_K)$ denote the parameters for each of the *K* components in a FMM and let $\gamma = (\gamma_1, \dots, \gamma_K)'$ denote the mixture probabilities.
- The LEAP is given by

$$\pi_{\mathsf{LEAP}}(oldsymbol{ heta},oldsymbol{\gamma}) \propto \prod_{i=1}^{n_0} \left\{ \sum_{k=1}^K \gamma_k f(y_{0i}|oldsymbol{ heta}_k)
ight\} \pi_0(oldsymbol{ heta}),$$

where π_0 is an initial prior for θ .

(1)

The Latent Exchangeability Prior (LEAP)

• We assume WLOG that the parameter vector for the current data is θ_1 .

Thus, the joint density of the current data is given by $f(\mathbf{y}|\theta_1) = \prod_{i=1}^n f(y_i|\theta_1)$.

The parameter $\gamma_1 = \Pr(c_{0i} = 1)$ quantifies the marginal probability of being exchangeable with the current data.

Theorem: The initial prior π_0 in (1) can sometimes be improper for the first component, but must otherwise be proper.

The Latent Exchangeability Prior

- It is more convenient to work with the LEAP in (1) using the latent class representation.
- Let c_{0i} ∈ {1,...,K} denote to which component subject *i* of the historical data belongs.
- The latent class representation of the LEAP is

$$\pi_{\mathsf{LEAP}}(oldsymbol{ heta},oldsymbol{\gamma},oldsymbol{c}_0) = \prod_{i=1}^{n_0} \prod_{k=1}^{K} \left\{ \gamma_k f(oldsymbol{y}_{0i}|oldsymbol{ heta}_k)
ight\}^{oldsymbol{c}_{0ik}}$$

where $c_{0i} = (c_{0i1}, ..., c_{0ik})$ is a multinomial vector and $c_{0ik} = 1\{c_{0i} = k\}$.

Thus, (2) indicates that individuals with $c_{0i} = 1$ are exchangeable with the current data.

(2)

Connection with Bayesian Model Averaging

- Bayesian model averaging (BMA) is considered a gold standard in handling model uncertainty.
- For the ESTEEM trials, our uncertainty arises in not knowing who among the ESTEEM I trial is exchangeable with the ESTEEM II trial.
- ldeally, we would place prior probabilities on all $L = K^{n_0}$ partitions of the historical data, say, π_{0l} , l = 1, ..., L.
- Given the I^{th} partition, say, $y_{0/}$, we may compute the posterior as

 $p(\theta_1|\mathbf{y},\mathbf{y}_{0l}) \propto \mathcal{L}(\theta_1|\mathbf{y})\pi(\theta_1|\mathbf{y}_{0l}).$

Finally, we average over these partitions so that our posterior is given by

$$p(\theta_1|\boldsymbol{y}, \boldsymbol{y}_0) = \frac{\sum_{l=1}^{L} \pi_{0l} p(\theta_1|\boldsymbol{y}, \boldsymbol{y}_{0l})}{\sum_{m=1}^{M} \pi_{0m} \int p(\theta_1|\boldsymbol{y}, \boldsymbol{y}_{0m}) d\theta_1}$$

Connection with Bayesian Model Averaging

- Unfortunately, the classical BMA approach is not practical in general.
- Let $\pi(\mathcal{D}_{0l})$ denote the probability from the PMF $f(\mathbf{c}_0)$ corresponding with the l^{th} partition, \mathcal{D}_{0l} . Let $\mathcal{D}_{0lk} = \{i \in \mathcal{D}_{0l} : \mathbf{c}_{0i} = k\}$.
- Let $\pi(\theta, \gamma | \mathcal{D}_{0l}) \propto \pi_0(\theta, \gamma) \prod_{k=1}^K \gamma_k^{n_{0k}} L(\theta_k | \mathcal{D}_{0lk})$ be the conditional LEAP corresponding to partition \mathcal{D}_{0l} .
- We refer to the $\pi(\mathcal{D}_{0l})$'s as "prior partition probabilities." The prior for θ may then be expressed as

$$\pi(\theta, \gamma | D_0) = \sum_{l=1}^{L} \pi(\mathcal{D}_{0l}) \pi(\theta, \gamma | \mathcal{D}_{0l}).$$
(3)

Thus, the LEAP is conceptually equivalent to BMA with prior partition probabilities induced by the mixture model and initial prior of the historical data.

BMA: Poisson Example

Suppose the historical data are $(y_{01}, y_{02}, y_{03}) = (1, 2, 6)$.

Let
$$n_{0k} = \sum_{i=1}^{n_0} 1\{c_{0i} = k\}$$
 and let $\bar{y}_{0k} = n_{0k}^{-1} \sum_{i=1}^{n_0} (y_{0i} 1\{c_{0i} = k\}).$

• We elicit $\gamma \sim \text{Dir}(0.9, 0.9)$ and $\theta_k \sim \text{Gamma}(0.1, 0.1)$, yielding

$$\pi(heta|m{c}_{0}, D_{0}) \propto f_{\mathsf{Dir}}(\gamma|m{n}_{0}+0.9 imesm{1}) \prod_{k=1}^{K} \mathit{f}_{\mathsf{F}}\left(heta_{k}|m{n}_{0k}ar{m{y}}_{0k}+0.1, \mathit{n}_{0k}+0.1
ight)$$

It can be shown that

$$\pi(\mathbf{c}_0|D_0) \propto B(n_{01}+0.9,n_{02}+0.9) imes \prod_{k=1}^2 rac{\Gamma(n_{0k}ar{y}_{0k}+0.1)}{(n_{0k}+0.1)^{n_{0k}ar{y}_{0k}+0.1}}$$

BMA: Poisson Example

(c_{01}, c_{02}, c_{03})	$E[heta_1 D_0,oldsymbol{c}_0]$	$\pi(\boldsymbol{c}_0 D_0)$	$E[\theta_1 D, D_0, \boldsymbol{c}_0]$	$p(\boldsymbol{c}_0 D,D_0)$
(1, 1, 1)	2.94	0.319	1.84	0.412
(2, 2, 2)	1.00	0.319	1.50	0.108
(1,1,2)	1.48	0.092	1.50	0.259
(2,2,1)	5.55	0.092	1.90	0.017
(1,2,1)	3.38	0.020	1.83	0.019
(2, 1, 2)	1.91	0.020	1.54	0.045
(1,2,2)	1.00	0.068	1.45	0.105
(2, 1, 1)	3.86	0.068	1.91	0.035

Table: Prior and posterior means and partition probabilities for a Poisson model with n = 10, $\bar{y} = 1.5$, $y_0 = (1, 2, 6)$, $\gamma_1 \sim \text{Beta}(0.9, 0.9)$, and $\theta_k \sim \text{Gamma}(0.1, 0.1)$. The overall posterior mean is $E[\theta_1|D, D_0] = 1.66$.

BMA: Poisson Example

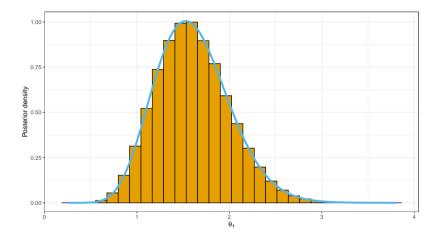


Figure: Comparison of MCMC and BMA approaches.

LEAP: Asymptotic Properties

- Asymptotically, the LEAP is capable of pooling the current and historical data sets together under full exchangeability.
- To see this, Rousseau and Mengersen (2011) [6] showed that if $\gamma_k = 0$ for some *k* and $\gamma \sim \text{Dir}(\eta_0)$ with $\eta_{0j} < 1$ for every *j*, then $E[\gamma_{0k}|D_0] \to 0$ as $n_0 \to \infty$.
- This illustrates both the potential power gains robustness property of the LEAP.
 - 1 If no one is exchangeable with the current data, we have $E[\gamma_1|D, D_0] \to 0$ as $n_0 \to \infty$.
 - 2 If everyone is exchangeable with the current data, we have $E[\gamma_1|D, D_0] \rightarrow 1$.
 - If a fraction of individuals are exchangeable with the current data, it is feasible to obtain power gains.

LEAP: Asymptotic Properties

- Consider $y_i \sim \text{Pois}(\theta_1)$, $y_{0i}|c_{0i} \sim \text{Pois}(\theta_{c_{0i}})$, $c_{0i} \sim \text{Cat}(\gamma_1)$, $\gamma_1 \in \{0.0, 0.5, 1.0\}$, n = 1,000.
- We report results for a single simulated data set with K = 2.
- We specify $\theta_k \sim \text{Gamma}(0.1, 0.1), \gamma_1 \sim \text{Beta}(0.9, 0.9).$

γ_1	<i>n</i> ₀	$E[\gamma_1 D, D_0]$	$SD(\gamma_1 D, D_0)$
0.0	100	0.058	0.045
	1000	0.014	0.011
0.5	100	0.486	0.074
	1000	0.473	0.034
1.0	100	0.926	0.081
	1000	0.981	0.026

Simulation Studies

Simulation Studies

• We assume K = 2 for the historical data and

y_{*i*} $\sim N(\mathbf{x}'_{i}\beta_{1},\sigma_{1}^{2}), i = 1, ..., n_{0} + h, h \in \{0, 50, 100, 150\}$

$$y_{0i}|c_{0i} \sim N(\textbf{x}'_{0i}\beta_{c_{0i}},\sigma^2_{c_{0i}}), i = 1, \dots, n_0 = 278$$

•
$$\gamma_1 = \Pr(c_{0i} = 1) = 1 - \Pr(c_{0i} = 2) \in \{0.0, 0.5, 1.0\}$$

a $\boldsymbol{x}_i \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$

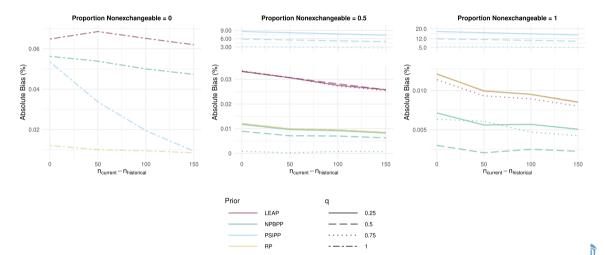
X_{0i}|
$$c_{0i} \sim N(\mu_{c_{0i}}, \Sigma_1)$$

• $\mu_2 = q \times \mu_1$ and $\beta_2 = q \times \beta_1$, $q \in \{0.25, 0.50, 0.75, 1.0\}$

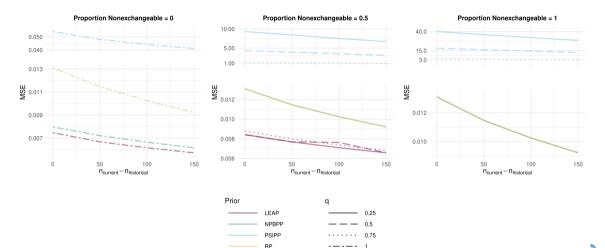
Values for β_1 , σ_1^2 , μ_1 , and Σ_1 were taken as the MLEs of the ESTEEM II trial.

• We elicited $\gamma_1 \sim \text{Beta}(0.9, 0.9), \beta_k \sim N(0, 10^2 I_p), \sigma_k^2 \sim \text{Half-Normal}(0, 10^2).$

Simulation Results: Percent Absolute Bias

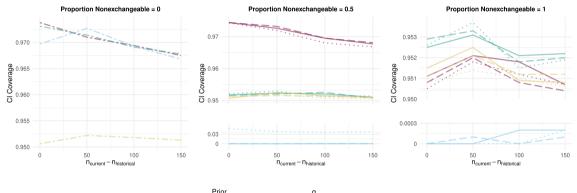


Simulation Results: Mean Squared Error



22 / 35

Simulation Results: 95% Credible Interval Coverage



1 1101		ч	
	LEAP		0.25
	NPBPP		0.5
	PSIPP		0.75
	RP		1

Application to the ESTEEM Trials

Patient characteristics for patients in the ESTEEM studies are presented in the Table below

	E	STEEM I	ESTEEM II				
Characteristic	Ν	Placebo	Ν	Placebo	Apremilast		
Age	282	46.5 ± 12.7	411	$\textbf{45.7} \pm \textbf{13.4}$	$\textbf{45.3} \pm \textbf{13.1}$		
Smoker Category	282		411				
Current user		92 (33%)		61 (45%)	101 (37%)		
Not a current user		190 (67%)		76 (55%)	173 (63%)		
Prior use of Systemic Therapies	282	. ,	411		. ,		
N		132 (47%)		64 (47%)	117 (43%)		
Y		150 (53%)		73 (53%)	157 (57%)		
Baseline PASI Score	282	19.4 (7.4)	411	20.0 (8.0)	18.9 (7.1)		
% change in total PASI Score	278	-16.7 (31.5)	405	-15.8 (41.3)	-50.9 (34.0)		
: Patient characteristic							
uous covariates show Mean \pm SD; binary covariates show N (%).							

- The number of historical controls is $n_{00} = 278$, and the number of current controls and current treated are given respectively by $n_{10} = 137$ and $n_{11} = 274$.
- We wish to augment the control arm without exceeding the current data treatment arm.
- Thus, we wish to borrow no more than $\tilde{n}_{00} = n_{11} n_{10} = 137$ controls from the historical data.
- This implies a constraint: $\gamma_1 \leq \frac{137}{278} \approx 0.49$.
- To accommodate this constraint, we derive a partially truncated Dirichlet (PTD) density, which constrains the first element of the vector.

26 / 35

- We elicit:
 - $\beta_k \sim N_p(0, 10^2 I_p)$.
 - $\sigma_k \sim \text{Half-Normal}(0, 10^2).$
 - $\gamma \sim \mathsf{PTD}\left(lpha = 0.95 imes \mathbf{1}, a = 0, b = 0.49
 ight).$
- We compare our approach with
 - 1 A normalized version of the partial borrowing power prior (lbrahim et al., 2015) [3], $a_0 \sim U(0, 0.49)$.
 - 2 A propensity score integrated power prior (PSIPP) of Lu et al. (2022) [4].
 - 3 A noninformative reference prior.

Prior	DIC	Post. Mean	Post. SD	95% CI
LEAP ($K = 2$)	4063.27	-31.4	3.35	(-38.0, -24.9)
LEAP $(K = 3)$	4063.26	-31.5	3.27	(-37.9, -25.0)
PBNPP	4062.09	-31.9	3.09	(-37.8, -25.8)
PSIPP	4091.21	-28.1	2.69	(-33.3, -22.8)
Reference	4064.04	-32.1	3.45	(-38.9, -25.4)

Table: Summary of the posterior density of the treatment effect (mean difference in % change in PASI score) using the ESTEEM I historical controls and ESTEEM II data sets. DIC = deviance information criterion; Post. Mean = posterior mean; Post. SD = posterior standard deviation, CI = credible interval.

	Prior							
	LEAP ($K = 2$)		LEAP ($K = 3$)		PBNPP		Reference	
Parameter	Post. Mean	Post. SD	Post. Mean	Post. SD	Post. Mean	Post. SD	Post. Mean	Post. SD
β_0	-21.23	3.915	-21.37	3.826	-21.63	3.755	-17.97	3.946
β_1	-31.39	3.353	-31.49	3.273	-31.86	3.085	-32.12	3.448
β_2	- 1.06	1.742	- 1.13	1.720	- 0.73	1.611	- 0.48	1.752
β_3	- 1.98	1.493	- 2.08	1.660	- 1.65	1.390	- 2.29	1.539
β_4	- 2.23	3.369	- 2.04	3.372	- 2.23	3.334	- 4.32	3.404
β_5	11.54	3.245	11.93	3.173	12.50	3.216	10.11	3.324
β_6	1.48	1.628	1.48	1.585	1.38	1.563	1.29	1.724
σ_1	35.44	1.145	35.41	1.112	35.27	1.150	35.71	1.237
γ_1	0.40	0.088	0.41	0.083				
a_0					0.34	0.095		

Table: Posterior means and standard deviations from the posterior densities of the ESTEEM-2 trial. The parameter $\sigma_1 = \tau_1^{-1/2}$ is the standard deviation of the outcome. Post. Mean = posterior mean; Post. SD = posterior standard deviation.

- The number of historical controls is $n_{00} = 278$, and the number of current controls and current treated are given respectively by $n_{10} = 137$ and $n_{11} = 274$.
- We wish to augment the control arm without exceeding the current data treatment arm.
- Thus, we wish to borrow no more than $\tilde{n}_{00} = n_{11} n_{10} = 137$ controls from the historical data.
- This implies a constraint: $\gamma_1 \leq \frac{137}{278} \approx 0.49$.
- To accommodate this constraint, we derive a partially truncated Dirichlet (PTD) density, which constrains the first element of the vector.

30 / 35

Conclusion

Conclusion

- We have developed a new class of priors called latent exchangeability priors.
- The LEAP is applicable when only a fraction of individuals in an external data set are exchangeable with the current data set.
- Efficiency gains can be made under partial exchangeability, which was not observed for the normalized power prior.
- Further avenues of research:
 - Treating *K* as random.
 - A LEAP for time-to-event data.
 - Using PS to elicit a prior for $\gamma_{1i} = \Pr(c_{0i} = 1 | \mathbf{x}_{0i})$.

Resources

- Software for implementing the proposed method is available at https://tinyurl.com/leapcode.
- A pre-print of the paper is available at https://tinyurl.com/leapprior.

Figure: Scan this QR code for the pre-print.

Alt

References I

- [1] B. P. Hobbs, D. J. Sargent, and B. P. Carlin. Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models. *Bayesian Analysis*, 7(3):639–674, Aug. 2012.
- [2] J. G. Ibrahim and M.-H. Chen. Power prior distributions for regression models. *Statistical Science*, 15(1):46–60, Feb. 2000.
- [3] J. G. Ibrahim, M.-H. Chen, M. Lakshminarayanan, G. F. Liu, and J. F. Heyse. Bayesian probability of success for clinical trials using historical data. *Statistics in Medicine*, 34(2):249–264, Jan. 2015.
- [4] N. Lu, C. Wang, W.-C. Chen, H. Li, C. Song, R. Tiwari, Y. Xu, and L. Q. Yue. Propensity score-integrated power prior approach for augmenting the control arm of a randomized controlled trial by incorporating multiple external data sources. *Journal of Biopharmaceutical Statistics*, 32(1):158–169, 2022.

References II

- [5] K. Papp, K. Reich, C. L. Leonardi, L. Kircik, S. Chimenti, R. G. B. Langley, C. Hu, R. M. Stevens, R. M. Day, K. B. Gordon, N. J. Korman, and C. E. M. Griffiths. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). *Journal of the American Academy of Dermatology*, 73(1):37–49, July 2015.
- [6] J. Rousseau and K. Mengersen. Asymptotic behaviour of the posterior distribution in overfitted mixture models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(5):689–710, 2011.
- [7] H. Schmidli, S. Gsteiger, S. Roychoudhury, A. O'Hagan, D. Spiegelhalter, and B. Neuenschwander. Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics*, 70(4):1023–1032, 2014.

