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Motivation
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Case Study: The ESTEEM Trials
The ESTEEM I [5] and ESTEEM II [5] trials were two phase 3 clinical trials for patients
with moderate-to-severe plaque psoriasis.

Patients were randomized 2:1 to Apremilast, an oral phosphodiesterase 4 (PDE4)
inhibitor, or placebo.

The ESTEEM I trial randomized 562 subjects to Apremilast and 282 subjects to
placebo.

In the ESTEEM II trial, 274 subjects were randomized to Apremilast arm and 137 were
assigned to placebo.

We wish to borrow the most relevant (i.e., exchangeable) patients from the ESTEEM I
trial.
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Current approaches
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Propensity Score Approaches
In the Bayesian information borrowing literature, propensity score (PS) integrated
priors have been proposed.

The PS is defined as the conditional probability a subject enrolls in the current study
given covariates, i.e.,

ei = Pr(Si = 1|xi) and e0i = Pr(S0i = 1|x0i),

where Si ,S0i ∈ {0,1} denotes the study ID (1 = current; 0 = historical) for the current
and historical data participants, respectively.

The goal behind PS methods is to use matching, weighting, or stratification techniques
to assess exchangeability.
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Propensity Score Approaches
PS approaches are typically two-stage approaches:

1 Design stage

The PS is estimated.

A PS method (e.g., matching, stratification) is applied.

Individuals who are matched or within a stratum are considered exchangeable.

2 Analysis stage

A treatment-only model is estimated.

Bayesian approaches integrate the matched or stratified data with popular priors like power
priors [2], commensurate priors [1], and meta-analytic predictive (MAP) priors [7].
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Propensity Score Approaches
In the causal inference (CI) literature, it is shown that PS approaches result in balance
in the baseline covariates, so that exchangeability can be assumed.

The underlying DAG when using PS approaches in clinical trials lacks real-world
intuition.

In many cases, it is more desirable to condition on covariates.

Moreover, these approaches treat the PS as known and fixed, which is at odds with
Bayesian thinking.

In fact, in the causal inference literature, Bayesian approaches that incorporate
propensity scores have been criticized due to the lack of a Bayesian justification for the
PS model (i.e., a joint model for the outcome and PS).
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LEAP: The general methodology
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The Latent Exchangeability Prior
The LEAP is predicated under the assumption that the historical data follow a finite
mixture model (FMM), where one of the components of the mixture is the same density
as the current data.

Let θ = (θ1, . . . ,θK ) denote the parameters for each of the K components in a FMM
and let γ = (γ1, . . . , γK )

′ denote the mixture probabilities.

The LEAP is given by

πLEAP(θ,γ) ∝
n0∏

i=1

{
K∑

k=1

γk f (y0i |θk )

}
π0(θ), (1)

where π0 is an initial prior for θ.

Alt LEAP 9 / 35



The Latent Exchangeability Prior (LEAP)
We assume WLOG that the parameter vector for the current data is θ1.

Thus, the joint density of the current data is given by f (y |θ1) =
∏n

i=1 f (yi |θ1).

The parameter γ1 = Pr(c0i = 1) quantifies the marginal probability of being
exchangeable with the current data.

Theorem: The initial prior π0 in (1) can sometimes be improper for the first
component, but must otherwise be proper.
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The Latent Exchangeability Prior
It is more convenient to work with the LEAP in (1) using the latent class representation.

Let c0i ∈ {1, . . . ,K} denote to which component subject i of the historical data
belongs.

The latent class representation of the LEAP is

πLEAP(θ,γ,c0) =

n0∏
i=1

K∏
k=1

{γk f (y0i |θk )}c0ik , (2)

where c0i = (c0i1, . . . , c0ik ) is a multinomial vector and c0ik = 1{c0i = k}.

Thus, (2) indicates that individuals with c0i = 1 are exchangeable with
the current data.

Alt LEAP 11 / 35



Connection with Bayesian Model Averaging
Bayesian model averaging (BMA) is considered a gold standard in handling model
uncertainty.
For the ESTEEM trials, our uncertainty arises in not knowing who among the ESTEEM
I trial is exchangeable with the ESTEEM II trial.
Ideally, we would place prior probabilities on all L = K n0 partitions of the historical data,
say, π0l , l = 1, . . . , L.
Given the l th partition, say, y0l , we may compute the posterior as

p(θ1|y ,y0l) ∝ L(θ1|y)π(θ1|y0l).

Finally, we average over these partitions so that our posterior is given by

p(θ1|y ,y0) =

∑L
l=1π0lp(θ1|y ,y0l)∑M

m=1π0m
∫

p(θ1|y ,y0m)dθ1
.
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Connection with Bayesian Model Averaging
Unfortunately, the classical BMA approach is not practical in general.

Let π(D0l) denote the probability from the PMF f (c0) corresponding with the l th

partition, D0l . Let D0lk = {i ∈ D0l : c0i = k}.

Let π(θ,γ|D0l) ∝ π0(θ,γ)
∏K

k=1 γ
n0k
k L(θk |D0lk ) be the conditional LEAP

corresponding to partition D0l .

We refer to the π(D0l)’s as “prior partition probabilities.” The prior for θ may then be
expressed as

π(θ,γ|D0) =
L∑

l=1

π(D0l)π(θ,γ|D0l). (3)

Thus, the LEAP is conceptually equivalent to BMA with prior partition probabilities
induced by the mixture model and initial prior of the historical data.

Alt LEAP 13 / 35



BMA: Poisson Example

Suppose the historical data are (y01, y02, y03) = (1,2,6).

Let n0k =
∑n0

i=1 1{c0i = k} and let ȳ0k = n−1
0k

∑n0
i=1 (y0i1{c0i = k}).

We elicit γ ∼ Dir(0.9,0.9) and θk ∼ Gamma(0.1,0.1), yielding

π(θ|c0,D0) ∝ fDir(γ|n0 + 0.9 × 1)
K∏

k=1

fΓ (θk |n0k ȳ0k + 0.1,n0k + 0.1)

It can be shown that

π(c0|D0) ∝ B(n01 + 0.9,n02 + 0.9)×
2∏

k=1

Γ (n0k ȳ0k + 0.1)
(n0k + 0.1)n0k ȳ0k+0.1
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BMA: Poisson Example

(c01, c02, c03) E [θ1|D0,c0] π(c0|D0) E [θ1|D,D0,c0] p(c0|D,D0)

(1,1,1) 2.94 0.319 1.84 0.412
(2,2,2) 1.00 0.319 1.50 0.108
(1,1,2) 1.48 0.092 1.50 0.259
(2,2,1) 5.55 0.092 1.90 0.017
(1,2,1) 3.38 0.020 1.83 0.019
(2,1,2) 1.91 0.020 1.54 0.045
(1,2,2) 1.00 0.068 1.45 0.105
(2,1,1) 3.86 0.068 1.91 0.035

Table: Prior and posterior means and partition probabilities for a Poisson model with n = 10,
ȳ = 1.5, y0 = (1, 2, 6), γ1 ∼ Beta(0.9, 0.9), and θk ∼ Gamma(0.1, 0.1). The overall posterior mean
is E [θ1|D,D0] = 1.66.
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BMA: Poisson Example

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
θ1

P
os

te
rio

r 
de

ns
ity

Figure: Comparison of MCMC and BMA approaches.
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LEAP: Asymptotic Properties
Asymptotically, the LEAP is capable of pooling the current and historical data sets
together under full exchangeability.

To see this, Rousseau and Mengersen (2011) [6] showed that if γk = 0 for some k and
γ ∼ Dir(η0) with η0j <1 for every j , then E [γ0k |D0] → 0 as n0 → ∞.

This illustrates both the potential power gains robustness property of the LEAP.

1 If no one is exchangeable with the current data, we have E [γ1|D,D0] → 0 as n0 → ∞.

2 If everyone is exchangeable with the current data, we have E [γ1|D,D0] → 1.

3 If a fraction of individuals are exchangeable with the current data, it is feasible to obtain
power gains.
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LEAP: Asymptotic Properties
Consider yi ∼ Pois(θ1), y0i |c0i ∼ Pois(θc0i ), c0i ∼ Cat(γ1), γ1 ∈ {0.0,0.5,1.0},
n = 1,000.

We report results for a single simulated data set with K = 2.

We specify θk ∼ Gamma(0.1,0.1), γ1 ∼ Beta(0.9,0.9).

γ1 n0 E [γ1|D,D0] SD(γ1|D,D0)

0.0 100 0.058 0.045
1000 0.014 0.011

0.5 100 0.486 0.074
1000 0.473 0.034

1.0 100 0.926 0.081
1000 0.981 0.026
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Simulation Studies
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Simulation Studies
We assume K = 2 for the historical data and

yi ∼ N(x ′
i β1, σ2

1), i = 1, . . . , n0 + h, h ∈ {0,50,100,150}

y0i |c0i ∼ N(x ′
0iβc0i , σ2

c0i
), i = 1, . . . , n0 = 278

γ1 = Pr(c0i = 1) = 1 − Pr(c0i = 2) ∈ {0.0,0.5,1.0}

xi ∼ N(µ1,Σ1)

x0i |c0i ∼ N(µc0i ,Σ1)

µ2 = q × µ1 and β2 = q × β1, q ∈ {0.25,0.50,0.75,1.0}

Values for β1, σ2
1, µ1, and Σ1 were taken as the MLEs of the ESTEEM II trial.

We elicited γ1 ∼ Beta(0.9,0.9), βk ∼ N(0,102Ip), σ2
k ∼ Half-Normal(0,102).
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Simulation Results: Percent Absolute Bias
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Simulation Results: Mean Squared Error
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Simulation Results: 95% Credible Interval Coverage
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Application to the ESTEEM Trials

Alt LEAP 24 / 35



ESTEEM Studies: Data Analysis
Patient characteristics for patients in the ESTEEM studies are presented in the Table
below

ESTEEM I ESTEEM II

Characteristic N Placebo N Placebo Apremilast

Age 282 46.5 ± 12.7 411 45.7 ± 13.4 45.3 ± 13.1
Smoker Category 282 411

Current user 92 (33%) 61 (45%) 101 (37%)
Not a current user 190 (67%) 76 (55%) 173 (63%)

Prior use of Systemic Therapies 282 411
N 132 (47%) 64 (47%) 117 (43%)
Y 150 (53%) 73 (53%) 157 (57%)

Baseline PASI Score 282 19.4 (7.4) 411 20.0 (8.0) 18.9 (7.1)
% change in total PASI Score 278 -16.7 (31.5) 405 -15.8 (41.3) -50.9 (34.0)

: Patient characteristics and of ESTEEM I and ESTEEM II. Contin-
uous covariates show Mean ± SD; binary covariates show N (%).
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ESTEEM Studies: Data Analysis
The number of historical controls is n00 = 278, and the number of current controls and
current treated are given respectively by n10 = 137 and n11 = 274.

We wish to augment the control arm without exceeding the current data treatment arm.

Thus, we wish to borrow no more than ñ00 = n11 − n10 = 137 controls from the
historical data.

This implies a constraint: γ1 ≤ 137
278 ≈ 0.49.

To accommodate this constraint, we derive a partially truncated Dirichlet (PTD) density,
which constrains the first element of the vector.
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ESTEEM Studies: Data Analysis
We elicit:

βk ∼ Np(0,102Ip).

σk ∼ Half-Normal(0,102).

γ ∼ PTD (α = 0.95 × 1,a = 0,b = 0.49).

We compare our approach with

1 A normalized version of the partial borrowing power prior (Ibrahim et al., 2015) [3],
a0 ∼ U(0,0.49).

2 A propensity score integrated power prior (PSIPP) of Lu et al. (2022) [4].

3 A noninformative reference prior.
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ESTEEM Studies: Data Analysis

Prior DIC Post. Mean Post. SD 95% CI

LEAP (K = 2) 4063.27 −31.4 3.35 (−38.0, −24.9)
LEAP (K = 3) 4063.26 −31.5 3.27 (−37.9, −25.0)
PBNPP 4062.09 −31.9 3.09 (−37.8, −25.8)
PSIPP 4091.21 −28.1 2.69 (−33.3, −22.8)
Reference 4064.04 −32.1 3.45 (−38.9, −25.4)

Table: Summary of the posterior density of the treatment effect (mean difference in % change in
PASI score) using the ESTEEM I historical controls and ESTEEM II data sets. DIC = deviance
information criterion; Post. Mean = posterior mean; Post. SD = posterior standard deviation, CI =
credible interval.
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ESTEEM Studies: Data Analysis

Prior

LEAP (K = 2) LEAP (K = 3) PBNPP Reference

Parameter Post. Mean Post. SD Post. Mean Post. SD Post. Mean Post. SD Post. Mean Post. SD

β0 −21.23 3.915 −21.37 3.826 −21.63 3.755 −17.97 3.946
β1 −31.39 3.353 −31.49 3.273 −31.86 3.085 −32.12 3.448
β2 − 1.06 1.742 − 1.13 1.720 − 0.73 1.611 − 0.48 1.752
β3 − 1.98 1.493 − 2.08 1.660 − 1.65 1.390 − 2.29 1.539
β4 − 2.23 3.369 − 2.04 3.372 − 2.23 3.334 − 4.32 3.404
β5 11.54 3.245 11.93 3.173 12.50 3.216 10.11 3.324
β6 1.48 1.628 1.48 1.585 1.38 1.563 1.29 1.724
σ1 35.44 1.145 35.41 1.112 35.27 1.150 35.71 1.237
γ1 0.40 0.088 0.41 0.083
a0 0.34 0.095

Table: Posterior means and standard deviations from the posterior densities of the ESTEEM-2 trial.
The parameter σ1 = τ−1/2

1 is the standard deviation of the outcome. Post. Mean = posterior mean;
Post. SD = posterior standard deviation.
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ESTEEM Studies: Data Analysis
The number of historical controls is n00 = 278, and the number of current controls and
current treated are given respectively by n10 = 137 and n11 = 274.

We wish to augment the control arm without exceeding the current data treatment arm.

Thus, we wish to borrow no more than ñ00 = n11 − n10 = 137 controls from the
historical data.

This implies a constraint: γ1 ≤ 137
278 ≈ 0.49.

To accommodate this constraint, we derive a partially truncated Dirichlet (PTD) density,
which constrains the first element of the vector.
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Conclusion
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Conclusion
We have developed a new class of priors called latent exchangeability priors.

The LEAP is applicable when only a fraction of individuals in an external data set are
exchangeable with the current data set.

Efficiency gains can be made under partial exchangeability, which was not observed
for the normalized power prior.

Further avenues of research:

Treating K as random.

A LEAP for time-to-event data.

Using PS to elicit a prior for γ1i = Pr(c0i = 1|x0i).
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Resources
Software for implementing the proposed method is available at
https://tinyurl.com/leapcode.
A pre-print of the paper is available at https://tinyurl.com/leapprior.

Figure: Scan this QR code for the pre-print.
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