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Arguments Pro Bayes

¢ Coherent (avoids internal contradictions)
¢ Consistent under the null

* Quantifies evidence (data-driven change in
reasonable belief)

* Adheres to the likelithood principle and
stopping rule principle

¢ Conditions on the observed data
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Arguments Pro Bayes

* Evidence may be monitored as the data
accumulate

¢ Background knowledge can be incorporated

¢ Differentiates evidence for absence from
absence of evidence

* Allows probability statements for parameters
and hypotheses

* Directly addresses the questions of interest



Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?



Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?

— Tradition/inertia (convenience, fear of the
unknown)



Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?

— Tradition/inertia (convenience, fear of the
unknown)




Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?



Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?

—“Laziness” (Harold Jeffreys)



Arguments Pro Bayes

* Why do regulatory bodies stick to frequentist
statistics?

—“Laziness” (Harold Jeffreys)




Arguments Pro Bayes

* A regulatory body 1s about to allow a drug on
the market, based exclusively on a
frequentist analysis.



Arguments Pro Bayes

* A regulatory body 1s about to allow a drug on
the market, based exclusively on a
frequentist analysis.

¢ Suppose a reasonable Bayesian re-analysis
undercuts the frequentist conclusions.




Arguments Pro Bayes

* A regulatory body 1s about to allow a drug on
the market, based exclusively on a
frequentist analysis.

¢ Suppose a reasonable Bayesian re-analysis
undercuts the frequentist conclusions.

¢ Should the regulatory body be aware? Should
they care? Should they prevent this
possibility from arising?



Type B Error

* Arises when a reasonable Bayesian analysis
yields a conclusion that conflicts with the
frequentist analysis.

¢ Currently, this error 1s entirely 1gnored.



Type B Error

¢ Controlling Type I error rate 1s
commendable, but not at the expense of:

— Quantifying the evidence

— Assessing the probability that you are
correct for the case at hand.



Type F Error

* We may also introduce the “Type F” Error:
executing a frequentist analysis to answer
questions that are fundamentally Bayesian.
However, I don’t want to be too provocative.
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Being Stubborn and Wrong

In a nutshell, a Bayesian will perform poorly if he/she is both misguided (with
prior mean far from the true value of the parameter) and stubborn (placing a
good deal of weight near the prior mean).

Samaniego, 2013



Definition of a Bayesian
(Adjusted from Senn, 2007)

“One who, strongly expecting a horse and
clearly viewing a donkey, confidently asserts
having seen a mule.”
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Frequentist Planning

* Assume a single population effect size o
under the alternative hypothesis H1;

* Determine the sample size that gives a
reasonable chance of correctly rejecting HO.

* But how should o be chosen?
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The Smallest Effect
Size of Interest?

* Whose interest?

* What if we want to establish a theoretical

causal connection, so any o > 0 suffices?
[Higg’s boson, ESP]

* Does method X affect the biological
mechanism at all? [Does whiskey cure snake

bite? If so we could enhance the dose for a
better effect]
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Take Home Message, 1

* When planning a study, even frequentists
must confront the 1ssue of what effect sizes
are plausible.

* The frequentist selects one value of o for
planning, and decides on a sample size.

¢ But what 1f this value proves to be
completely wrong?



Take Home Message, 11

* The frequentist now finds themselves in
Senn’s donkey scenario, but without the
ability to learn at all.

* The single value of 0 cannot be updated 1n-
between; the experiment cannot be
redesigned on the fly.

* There 1s no recovery from this, except to start
all over. The frequentist 1s stmply screwed.
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T, - Bayes Factors:
W8 Data-Driven Change 1n Beliefs

p(H1 | data) _ p(H1) y p(data | Hq)
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Testicular volume is inversely correlated with
nurturing-related brain activity in human fathers

Jennifer S. Mascaro®®<, Patrick D. Hackett?, and James K. Rilling®® <9’

15746-15751 | PNAS | September 24, 2013 | vol. 110 | no. 39



Results

Reproductive Biology and Parenting Behavior. Although testes vol-
ume was not related to body mass, there was a significant linear
correlation between testes volume and height [#(53) = 0.27, P <
0.05]. Therefore, residual testes volume, controlling for height,
was used in subsequent analyses. Residual testes volume was
negatively related to paternal caregiving [r(52) = —0.29, P < 0.05]
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Discussion

Collectively, these data provide the most direct support to date
that the biology of human males reflects a trade-off between
mating and parenting effort. Fathers® testicular volume and

testosterone levels were inversely related to parental investment
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Conclusion for PNAS Study:
A Type B Error

* The strength of evidence provided by the
Bayes factor 1s weak-to-modest, and conflicts
with the frequentist all-or-none decision to
“reject the null hypothesis”.



Bayes Factor Design Analysis:
Planning for Compelling Evidence

* We may design a study such that the
probability of obtaining compelling evidence
1s relatively high.

— F1x n, assess distribution on BFs

— F1x BF, assess distribution on #»
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BRIEF REPORT

Bayes factor design analysis: Planning for compelling
evidence

Felix D. Schonbrodt! - Eric-Jan Wagenmakers?>

Behavior Research Methods (2019) 51:1042-1058
https://doi.org/10.3758/s13428-018-01189-8

A tutorial on Bayes Factor Design Analysis using an informed prior

Angelika M. Stefan’ - Quentin F. Gronau’ - Felix D. Schonbrodt? - Eric-Jan Wagenmakers'



Overview

¢ Arguments pro Bayes

¢ Stubborn and wrong: when Bayes fails

* When frequentists are stubborn and wrong
¢ Bayes factors

¢ Interim design analyses



Key Insight: BFDA May Be
Executed on the Fly

¢ As the data accumulate, we learn about the
values of o that are plausible.

¢ At any time we may conduct a new BFDA to
quantify our updated expectations regarding
evidence and sample size.
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Interim Design Analysis Using Bayes Factor Forecasts

Angelika M. Stefan®’, Quentin F. Gronau®, Eric-Jan Wagenmakers"



Bayes factor forecast under My

10000
1000

100~

10

=

1/10 -

1/100 ~

1/1000

Bayes factor

1/10000

| I I I |

0 20 40 60 80

Sample size per group

0.9 %

99.1 %

0 %




Bayes factor forecast under M

Bayes factor

1/1000 -
1/10000 -
0 20 40 60 80
Sample size per group




Model-averaged Bayes factor forecast
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Reasons for Stopping

* Compelling evidence either way
* Resources depleted
* Futility
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Conclusions |

* Bayesian inference 1s theoretically attractive,
but also affords great practical advantages.

* | believe 1t 1s counterproductive for
regulators to 1ignore Bayesian analyses. You
may ask “what about Type I error control?”,
but instead ask “what about the evidence?”



Conclusions 11

* Key questions:

—“in light of the data, what is the
probability that the treatment is effective?”

—“how much do the data enhance the
credibility of HI versus H0O?”

¢ These fundamental questions can only be
answered by a Bayesian analysis.



Conclusions II1

* Another key question 1s “in light of the data,
should we allow this drug on the market ?”

¢ This 1s also fundamentally a Bayesian
question! Rational decision making requires
that we bring together prior knowledge, data,
and utilities.



Conclusions IV

* Instead of focusing on Type I errors,
regulators ought to start worrying about:

— Type B errors, where a reasonable
Bayesian analysis contradicts the
frequentist analysis;

— Type F errors, where frequentist analyses
are misused to answer Bayesian questions.



Thanks for your Attention!
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