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Arguments Pro Bayes

 Evidence may be monitored as the data 
accumulate

 Background knowledge can be incorporated

 Differentiates evidence for absence from 
absence of evidence

 Allows probability statements for parameters 
and hypotheses

 Directly addresses the questions of interest   
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Arguments Pro Bayes

 A regulatory body is about to allow a drug on 
the market, based exclusively on a 
frequentist analysis.

 Suppose a reasonable Bayesian re-analysis 
undercuts the frequentist conclusions.

 Should the regulatory body be aware? Should 
they care? Should they prevent this 
possibility from arising?  



Type B Error

 Arises when a reasonable Bayesian analysis 
yields a conclusion that conflicts with the 
frequentist analysis.

 Currently, this error is entirely ignored.

  



Type B Error

 Controlling Type I error rate is 
commendable, but not at the expense of:

– Quantifying the evidence

– Assessing the probability that you are 
correct for the case at hand.

 



Type F Error

 We may also introduce the “Type F” Error: 
executing a frequentist analysis to answer 
questions that are fundamentally Bayesian. 
However, I don’t want to be too provocative.
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Being Stubborn and Wrong 



Definition of a Bayesian
(Adjusted from Senn, 2007)

  “One who, strongly expecting a horse and 
clearly viewing a donkey, confidently asserts 
having seen a mule.”













More information at 
jasp-stats.org





June ?? & ??, 2024
University of Amsterdam

Tenth Annual JASP Workshop 
Theory and Practice of Bayesian Hypothesis Testing 
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University of Amsterdam

Twelfth Annual JAGS Workshop
Bayesian Modeling for Cognitive Science





Overview

 Arguments pro Bayes

 Stubborn and wrong: when Bayes fails

 When frequentists are stubborn and wrong

 Bayes factors

 Interim design analyses   



Frequentist Planning 

 Assume a single population effect size δ 
under the alternative hypothesis H1;

 Determine the sample size that gives a 
reasonable chance of correctly rejecting H0.   



Frequentist Planning 

 Assume a single population effect size δ 
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 Determine the sample size that gives a 
reasonable chance of correctly rejecting H0.

 But how should δ be chosen?
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The Smallest Effect 
Size of Interest? 

 Whose interest?

 What if we want to establish a theoretical 
causal connection, so any δ > 0 suffices? 
[Higg’s boson, ESP]

 Does method X affect the biological 
mechanism at all? [Does whiskey cure snake 
bite? If so we could enhance the dose for a 
better effect] 
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Take Home Message, I  

 When planning a study, even frequentists 
must confront the issue of what effect sizes 
are plausible.

 The frequentist selects one value of δ for 
planning, and decides on a sample size.

 But what if this value proves to be 
completely wrong?



Take Home Message, II  

 The frequentist now finds themselves in 
Senn’s donkey scenario, but without the 
ability to learn at all.

 The single value of δ cannot be updated in-
between; the experiment cannot be 
redesigned on the fly.

 There is no recovery from this, except to start 
all over. The frequentist is simply screwed.
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Bayes Factors: 
Data-Driven Change in Beliefs 





















Conclusion for PNAS Study:
A Type B Error 

 The strength of evidence provided by the 
Bayes factor is weak-to-modest, and conflicts 
with the frequentist all-or-none decision to 
“reject the null hypothesis”.   



Bayes Factor Design Analysis: 
Planning for Compelling Evidence

 We may design a study such that the 
probability of obtaining compelling evidence 
is relatively high.

– Fix n, assess distribution on BFs

– Fix BF, assess distribution on n     
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Key Insight: BFDA May Be 
Executed on the Fly

 As the data accumulate, we learn about the 
values of δ that are plausible.

 At any time we may conduct a new BFDA to 
quantify our updated expectations regarding 
evidence and sample size.

      











Reasons for Stopping

 Compelling evidence either way

 Resources depleted

 Futility

      





Conclusions I

 Bayesian inference is theoretically attractive, 
but also affords great practical advantages. 

 I believe it is counterproductive for 
regulators to ignore Bayesian analyses. You 
may ask “what about Type I error control?”, 
but instead ask “what about the evidence?”  



Conclusions II

 Key questions:

– “in light of the data, what is the 
probability that the treatment is effective?” 

– “how much do the data enhance the 
credibility of H1 versus H0?”

 These fundamental questions can only be 
answered by a Bayesian analysis.  



Conclusions III

 Another key question is “in light of the data, 
should we allow this drug on the market ?” 

 This is also fundamentally a Bayesian 
question! Rational decision making requires 
that we bring together prior knowledge, data, 
and utilities. 



Conclusions IV

 Instead of focusing on Type I errors, 
regulators ought to start worrying about:

– Type B errors, where a reasonable 
Bayesian analysis contradicts the 
frequentist analysis;

– Type F errors, where frequentist analyses 
are misused to answer Bayesian questions.



Thanks for your Attention!
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