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The Cancer Context

• Cancer is one of the most well-characterized path-physiological & 
path-biological disease systems at different molecular levels

• Multiple types of high-throughput data now available on the multiple
model systems: Patients, Cell-lines, Patent-Derived Xenografts (PDX), Organoids… 

[growing day by day!]

• Motivates many precision medicine endeavors…
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Precision Oncology 

Shrager, J. & Tenenbaum, J. M. Nat. Rev. Clin. Oncol. 

• Precision Oncology 1.0 

(~5-10 years ago)
• Small numbers of molecular 

abnormalities

• Always constrained by the 

tissue-of-origin

• Precision Oncology 2.0 

(Current) 
• Dozens or 100’s of possible 

mutational hotspots and 

exomes of cancer-associated 

genes.

• Could be tissue-agnostic

• Precision Oncology 3.0 

(Future)
• Pan-omic analyses

• Multi-system integration

• Network analyses
Today’s talk: enable discovery to translation
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High-level Goals

• Exploit the conserved biology between different 
model systems (patients, cell-lines, PDXs) to calibrate 
therapeutic response of drugs in patients 

• Find optimal pre-clinical “avatars” as proxies for 
patients

• Identify key genomic drivers and mechanisms 
explaining model system similarities

ICGC, TCGA, TCPA

CCLE, MCLP, GDSC

NCI60, LINCS, DepMap

Patients 

Tumor 

Systems

Pre-clinical 

Models

Drugs

Statistically…
• Joint probability models across model systems 

to borrow strength 
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Accurate identification of synergistic treatment combinations and their

underlying biological mechanisms is critical across many disease domains,

especially cancer. In translational oncology research, preclinical systems,

such as patient-derived xenografts (PDX), have emerged as a unique study

design evaluating multiple treatments administered to samples from the same

human tumor implanted into genetically identical mice. In this paper we

propose a novel Bayesian probabilistic tree-based framework for PDX data

to investigate the hierarchical relationships between treatments by inferring

treatment cluster trees, referred to as treatment trees (Rx-tree). The frame-

work motivates a new metric of mechanistic similarity between two or more

treatments, accounting for inherent uncertainty in tree estimation; treatments

with a high estimated similarity have potentially high mechanistic synergy.

Building upon Dirichlet diffusion trees, we derive a closed-form marginal

likelihood, encoding the tree structure, which facilitates computationally ef-

ficient posterior inference via a new two-stage algorithm. Simulation stud-

ies demonstrate superior performance of the proposed method in recovering

the tree structure and treatment similarities. Our analyses of a recently col-

lated PDX dataset produce treatment similarity estimates that show a high

degree of concordance with known biological mechanisms across treatments

in five different cancers. More importantly, we uncover new and potentially

effective combination therapies that confer synergistic regulation of specific

downstream biological pathways for future clinical investigations. Our ac-

companying code, data, and shiny application for visualization of results are

available at: https://github.com/bayesrx/RxTree.
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PURPOSEPersonalized network inference on diverse clinical and in vitro model systems across cancer types can

be used to delineate speci c regulatory mechanisms, uncover drug targets and pathways, and develop in-

dividualized predictive models in cancer.

METHODS We developed TransPRECISE (personalized cancer-speci c integrated network estimation model),

a multiscale Bayesian network modeling framework, to analyze the pan-cancer patient and cell line interactome

to identifydifferential and conserved intrapathway activities, toglobally assesscell linesas representative models

for patients, and to develop drug sensitivity prediction models. We assessed pan-cancer pathway activities for

a large cohort of patient samples (. 7,700) from the Cancer Proteome Atlas across ≥ 30 tumor types, a set of

640 cancer cell lines from the MD Anderson Cell Lines Project spanning 16 lineages, and ≥ 250 cell lines’

response to . 400 drugs.

RESULTS TransPRECISE captured differential and conserved proteomic network topologies and pathway cir-

cuitry between multiple patient and cell line lineages: ovarian and kidney cancers shared high levels of

connectivity in the hormone receptor and receptor tyrosine kinase pathways, respectively, between the two

model systems. Our tumor strati cation approach found distinct clinical subtypes of the patients represented by

different sets of cell lines: patients with head and neck tumors were classi ed into two different subtypes that are

represented byhead and neck and esophaguscell linesand had different prognostic patterns (456 v654 daysof

median overall survival; P = .02). High predictive accuracy was observed for drug sensitivities in cell lines across

multiple drugs (median area under the receiver operating characteristic curve . 0.8) using Bayesian additive

regression tree models with TransPRECISE pathway scores.

CONCLUSION Our study provides a generalizable analytic framework to assess the translational potential of

preclinical model systems and to guide pathway-based personalized medical decision making, integrating

genomic and molecular data across model systems.

JCOClin Cancer Inform 4:399-411. © 2020 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Precision medicine aims to improve clinical outcomes

by optimizing treatment to each individual patient. The

rapid accumulation of large-scale panomic molecular

data across multiple cancers on patients (the In-

ternational Cancer Genome Consortium,1 the Cancer

Genome Atlas [TCGA],2 Pan-Cancer Analysis of Whole

Genomes [PCAWG],3 the Cancer Proteome Atlas

[TCPA]4,5) and model systems (Genomics of Drug

Sensitivity in Cancer [GDSC],6 Cancer Cell Line En-

cyclopedia [CCLE],7 MD Anderson Cell Lines Project

[MCLP]8), together with extensive drug pro ling data

(NCI60 [National Cancer Institute-60 Human Tumor

Cell Lines Screen],9 the National Institutes of Health

Library of Integrated Network-Based Cellular

Signatures,10 Connectivity Map,11-13 The Cancer

Dependency Map Project14) have generated

information-rich and diverse community resources

with major implications for translational research in

oncology.15 However, a major challenge remains: to

bridge anticancer pharmacologic data to large-scale

omics in theparadigm wherein patient heterogeneity is

leveraged and inferred through rigorous and in-

tegrative data-analytic approaches across patients and

model systems.

Complex diseases such as cancer are often charac-

terized by small effects in multiple genes and proteins

that are interacting with each other by perturbing

downstream cellular signaling pathways.16-18 It is well

established that complex molecular networks and

systems are formed by a large number of interactions

of genes and their products operating in response to
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Bayesian joint factor-based models

Bayesian nonparametric tree-based 

models

Bayesian graphical 

modeling approaches



Bayesian Calibration of 
Therapeutic Indices
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Conceptual Integrative Framework

Training 
Model 
System

Target 
Model 
System

• m,n = # of samples

• p = # of genomic features

• q = # of drugs
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Naïve supervised approach

This does not account for 
potential genomic 
difference (or similarity) 
between the model 
systems!

Trained on cell lines and tested (independently) on patient’s data

Plug into the the training 
model for prediction 
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Training 
Model 
System

Target 
Model 
System

Cell Line-Drug

Model 

(Supervised) 

Cell Line-Patient

Model 

(Unsupervised) 

Induced Drug-

patient Model 

(Semi-supervised)

individualized theRapeutic index (iRx) model

Calibration approach

Saha et al (2022, AOAS)
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iRx Model Formulation

• Labeled data: (𝐷𝑗 , 𝑪𝒋), 𝑗 = 1,… , 𝑁𝐶 (# of cell lines)

• Unlabeled data: (𝐷𝑖
∗, 𝑷𝒊), 𝑖 = 1,… , 𝑁𝑃 (# of patients)

– (𝐷𝑗, 𝑪𝒋, 𝑷𝒊) = drug response and genomic measurements 

of 𝑗𝑡ℎcell line, 𝑖𝑡ℎ patient

– (𝑪𝒋, 𝑷𝒊) – each high-dimensional vector of G genes

– 𝐷𝑖
∗ unknown

• Key goal: infer distribution of 𝐷𝑖
∗

– 𝑝(𝐷|𝑃, Θ) <- target distribution of interest (iRx distribution)

– Θ (model parameters)



Veera Baladandayuthapani (Univ. of Michigan) Bayesian Multi-system Integration

iRx Distribution

• Many choices available for both sub-models
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iRx model specifications: Drug-Cell Line Model

• Drug-cell line model serves as our (labeled) training model
• Follows a penalized linear (ridge) regression model
• Can be more general: [insert your favorite prediction model]

• linear/parametric (e.g. lasso, horse-shoe…) or 
nonlinear/non-parametric (e.g. trees, additive models)
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iRx model specifications: Cell Line – Patient Model

• Latent factor models: captures the underlying genomic 
similarity using low-dimensional factors (K unknown)

• Explicitly quantify --
• Source-specific (patients vs. cell line) & 
• Shared variations separately (patients + cell lines)
• Dependence between genes
• Useful for clustering as well
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iRx Distribution and Calibration

Any distributional summary can be used to compute the iRx scores (mean, variance, 

quantiles etc..)
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iRx Scores

Note dependence on shared variation
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Naïve Scores

Bottom-line

• Better predictive accuracy in comparison to naïve 

plug-in approaches

• Can explicitly quantify accuracy gain based on 

shared variation (and shown in simulations)
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Bayesian Estimation
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Impact of variability on relative accuracy gain

Bottomline: iRx dominates NI, PC-based models in all scenarios; 

attributable to shared variation

S
h

a
re

d
 V

a
ri

a
ti

o
n

Patient-specific variation
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Clinical validation using existing trial data 

• Hypothesis: pooling information across labeled and 
unlabeled data (by using Cell line-patient model) 
improves calibration accuracy 

• Validate iRx (Semi-supervised) versus independent 
methods while estimating true drug response obtained 
from two clinical trials with drug-response data available

• Natural clustering due to latent factors can be used to 
– Find optimal cell line “avatars” as proxies for patients
– Identify key genomic drivers explaining cell line-patient 

similarities; conserved biology
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Data

• A panel of cell lines from GDSC database (training model 
system); log-IC50 as responses

• Target Clinical Data (drug responses are masked for validation)
– Multiple Myeloma Phase II and III clinical trials of bortezomib on 

relapsed/refractory multiple myeloma patients, clinical response –
Responder (CR, PR, MR; n=85) vs. non-responder (PD, NC; n=84) (Mulligan 

et al, 2007)

– Breast Cancer Docetaxel study for 24 breast cancer tumor, % 
reduction of tumor after four cycles. Responder (25% reduction, n=10) 
vs. non-responder(n=14) (Chang et al, 2003) 

• Used mRNA/gene-expression data 

• Some pre-processing and normalization (~1000 genes for 
fitting)
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Therapeutic response calibration

Multiple Myeloma
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Therapeutic response calibration

Breast Cancer
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Top Pathway Drivers of Shared Variation

Top two are MAPK signaling pathways 
and the endocytic pathways. NKG2D (a 
receptor activating natural killer cells 
(NK)) expression, in multiple myeloma 
(MM) cells after cord blood derived 
natural killer cell (CB-NK) treatment 
correlates with lower MM progression, 
and NKG2D and NKP30 contribute 
more to the cytotoxicity of MM cells. 



Probabilistic Learning of 
Treatment Trees in Cancer
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Patient Derived Xenografts (PDX)

• Broad context: preclinical models in cancer

• Create “avatar” for patients to test different plausible treatments

• Typical choices: 
• Tumor-derived cell lines: in vitro; cheaper but lower fidelity to human tumors

• Immuno-deficient mice: in vivo; more expensive with high clinical relevance

• Patient Derived Xenograft (PDX): implant cancer cell from a single patient 
to multiple immuno-deficient mice

• Capture better micro-environment with higher clinical relevance

Tumor 
cells Apply different 

treatments and 
measure “response” 

metrics
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PDX Experiments

• Multiple PDXs from same patients 
with set of treatments (usually same)

• Response: some metric of difference 
in tumor size (esp. in cancer)

• Use PDX data as a pre-clinical trial to 
screen different treatments; “co-
clinical trials”

• Key scientific question(s):

• Evaluate the effectiveness of multi-drug 
combinations

• Identify underlying plausible biological 
mechanisms

color gradient: change 
in treatment 
response(s)
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Tree-based representations

• Key concept: Treatments with the same target or biological mechanism 
should induce similar responses

• Engender mechanism-related clustering among treatments

• Infer hierarchy among treatments: partition + how clusters relate to 
each other

• “Flat” clustering (e.g. k-means) only shows partition patterns

• Known entities at the 
leaves, i.e., the different 
treatments

• Unknown tree to be 
inferred from the 
treatment responses

• We call this a treatment 
tree (RxTree)
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Treatment Trees (RxTree) on PDXs

• Rxtree empirically characterizes the mechanism similarity

• Rooted tree: root + internal nodes + branch lengths + leaves

• Key idea: Treatments that stay clustered “longer” have higher 
mechanism similarities

Only leaves are 
observable

clusters of treatments mechanism similarities

Treatments 1 and 
4: different but 

known biological 
mechanisms; the 
rest treatments 
have unknown 
mechanisms

The horizontal position 
of “△” measures the 
mechanism similarity 
for treatments {3,4,5}. 

The tree suggests two 
treatment groups 

corresponding to two 
different mechanisms
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Basic Construction of RxTrees

• Observed data i.e., responses matrix 𝐗I×J = 𝑿1…𝑿I
T for I treatments and J 

patients

• 𝑿.,j = X1j…XIj
T

observed response column for j-th patient across I treatments

• Model the responses through a generative model that results in a Gaussian 
likelihood:

• 𝑿.,j|𝚺
𝓣~iid𝐍I 𝟎, 𝚺𝓣 , j = 1,… , J

• 𝜮𝐢,𝒊′
𝓣 : covariance between treatments i and i′ and measures their similarity

• 𝚺𝓣 has a special structure: tree-based covariance (not usual covariance)

• Needs specific constraints; non-trivial to estimate
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Dirichlet Diffusion Trees

• Model 𝚺𝓣 through Dirichlet diffusion tree (DDT) model (Neal, 2001)

• Generate tree randomly through scaled Brownian motion

Represent the tree with 
the backbone



Veera Baladandayuthapani (Univ. of Michigan) Bayesian Multi-system Integration

Inferential summaries

• Given posterior samples, we can compute

• A global MAP of the Rx-tree that represents the 
overall hierarchy

• Local uncertainty estimates of posterior co-
clustering probabilities (PCP) for any subset of 
treatments

• PCP𝒜 t ∈ 0,1 quantifies propensity among 
treatments to cluster

• Integrated PCP (iPCP ∈ 0,1 ): area under the PCP 
curve as a scalar summary of PCP

• Several advantages of iPCP:

• Interpretable metric: expected (or average) chance of 
co-clustering for treatments

• Can compute multiway “correlations” (2,3,4… 
treatments) <- useful to find combination therapies
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Motivating data: NIBR-PDXE
• Novartis Institutes for BioMedical Research -

PDX Encyclopedia (NIBR-PDXE)

• High-throughput treatment screening using PDX 

• 1,075 PDX lines with 1×1×1 design (one animal 
per PDX model per treatment)

• Across ~16 cancers and 62 treatments

• 38 unique therapeutic entities

• Used in 36 monotherapies or in 26 combination 
therapies

• Focus on five cancers with more complete 
responses

• Breast carcinoma (BRCA); Cutaneous melanoma 
(CM); Colorectal cancer (CRC); Non-small cell lung 
carcinoma (NSCLC); Pancreatic ductal carcinoma 
(PDAC)

Gao, H. et al. High-throughput screening using patient-derived 
tumor xenografts to predict clinical trial drug response. Nat. 
Med. 21, 1318–1325 (2015)
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PI3K, MAPK and CDK inhibitors belong to a tighter subtree across cancers

RxTrees
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iPCP further quantifies the similarity

iPCPs
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• Treatments have different targets might have a high mechanistic 
similarity
• Might share a common downstream mechanism (hypothesis)

• PI3K and MAPK
• High pairwise iPCP

• BBRCA: (binimetinib, BKM120): 0.743; (binimetinib, BYL719): 0.744; (binimetinib, CLR457): 
0.743

• CRC: (binimetinib, BKM120): 0.737; (binimetinib, BYL719): 0.739; (binimetinib, CLR457): 
0.754; (CKX620, BKM120): 0.737, (CKX620, BYL719): 0.736, (CKX620, CLR457): 0.768

• CM: (binimetinib, BKM120): 0.8882 

• High multi-way iPCPs in BRCA (0.7422), CRC (0.7300) and CM (0.8882) 

• Plausible biological explanation: PI3K and MAPK can be induced by ERBB3 
phosphorylation (Balko et al., 2012)

Mechanistic Similarities in Monotherapies
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• Investigate combination therapies to identify synergistic mechanisms
• Combination therapies tend to form a tighter subtree 

• Mechanisms under combination therapies are similar to each other and are closer to the 
PI3K-MAPK-CDK pathways.

Combination Therapies
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• Four combination therapies were tested in 
BRCA 

• Three therapies targeting PI3K-MAPK-CDK

• {BYL719 + LJM716, BYL719 + LEE011 and 
LEE011 + everolimus} form a subtree with a 
high three-way iPCP (0.8719)

• Clinical relevance: PI3K-CDK inhibitor, 
BYL719 + LEE011, has synergistic 
regulation (Vora et al., 2014; Bonelli et al., 2017; Yuan et al., 2019) 

• High three-way iPCP suggest mechanistic 
synergy for combination therapies 
targeting: 
• PI3K-ERBB3 (BYL719 + LJM716) 

• CDK-MTOR (LEE011 + everolimus)

Breast Cancer
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Bhattacharya et al (JCO, 2020)

Personalized Network Modeling of the Pan-Cancer Patient and Cell Line 
Interactome

Pan-Cancer Models
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TransPRECISE

Input

RPPA-based proteomics data from 

the patients and cell lines.
Bhattacharya et al (JCO, 2020)
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Modeling

1. Bayesian graphical regression to estimate the cancer-specific 

pathway network structure.

2. De-convolving population-level networks to sample-specific networks.

3. Summarize networks and quantify pathway activity status. Bhattacharya et al (JCO, 2020)

TransPRECISE
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Outputs

1. Network comparison across lineages and model systems.

2. Matching cell lines to patient profiles.

3. Predicting patient drug responses.

Bhattacharya et al (JCO, 2020)

TransPRECISE
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Resources

Software: https://github.com/bayesrx

Shiny Apps: bayesrx.com

https://github.com/bayesrx
http://bayesrx.com/
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Summary

• Efficient harnessing of information from pre-clinical 
data

– Potential uses: re-purpose existing drugs, IND, FDA-
approved agents; drug-screening

– Find potentially useful combination therapies 

• Incorporate multi-omic data (e.g., epigenomics, 
proteomics, metabolomics, microbiome) 

• Extension to other model systems e.g., Organoids

• Relax linearity/Gaussian assumptions; non-par Bayes!
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If you can’t convince them, confuse them. 

– Harry Truman


