

Formulating two classes of power priors to leverage historical accelerated stability data

Yimer Wasihun Kifle

26/10/2023

Manufacturing and Applied Statistics (MAS)

Kinetics of degradation

Model selection results

Formulating power priors and applications

Summary

STABILITY STUDIES

ACCELERATED STABILITY STUDIES

pharmaceutical companies of Johnson Johnson

- A product is stored at recommended storage conditions
- Longer storage time (in months/years)

- A product is stored at elevated stress conditions
- Shorter storage time (in days/weeks)

Advantages of accelerated stability studies

Time & Cost Efficiency: Accelerated studies save time and resources.

Early Issue Detection: Identify stability problems early.

Regulatory Compliance: Expedite approvals.

Formulation Optimization: Improve product quality.

lansse

Initial accelerated stability data

Historical

Statistics and Decision Sciences

Follow-up accelerated stability data

Current

pharmaceutical companies of Johnson Johnson

KINETICS OF DEGRADATION

BAYESIAN KINETIC MODEL FORMULATION

Kinetics of degradation

• Chemical degradation of a degradant C(t) mechanism can be defined as:

$$\frac{dC(t)}{dt} = k * f(C(t))$$

Arrhenius equation

$$k_i = \mathbf{A} * \exp\left(\frac{-\mathbf{E}_a}{R * T_i}\right)$$

- k_i = the rate of degradation depending on the ith temperature T_i
- *A* = the pre-exponential factor
- *E_a* = the activation energy

10

• R = 0.0083144, the gas constant

Two humidity extended Arrhenius equations

 GK (Genton and Kesselring formulation)

$$k_{ij} = \exp\left(\ln(A) - \frac{E_a}{R * T_i} + B * RH_j\right)$$

B=Sensitivity parameter on the actual scale of the *jth* relative humidity (*RH_j* in %)

• CL (Clancy et al. formulation)

$$k_{ij} = \exp\left(\ln(A) - \frac{E_a}{R * T_i} + B * \ln(RH_j)\right)$$

 B = Sensitivity parameter on the logarithmic scale of the jth relative humidity (RH_j in %)

lans

Common kinetic models

Janssen

12

Bayesian kinetic model (BKM): First-order kinetics with GK formulation

$$\begin{cases} Y_{ijl} = C_0 + (C_1 - C_0) * \left(1 - exp(-k_{ij} * t_\ell)\right) + \epsilon_{ij\ell} \\ k_{ij} = exp\left(ln(A) - \frac{E_a}{R * T_i} + B * RH_j\right) \\ \epsilon_{ij\ell} \sim N(0, \sigma^2) \end{cases}$$

- Y_{ijl} = the observed degradation at the l^{th} timepoint t_l , the i^{th} temperature T_i and the j^{th} relative humidity RH_j
- C_0 = Amount of degradation as time tends to zero \rightarrow Fixed
- C_1 = Amount of degradation as time tends to + $\infty \rightarrow$ Fixed
- σ^2 = The variance of error $\epsilon_{ij\ell}$

13

Bayesian kinetic model (BKM): Power-law kinetics with GK formulation

$$\begin{cases} Y_{ijl} = C_0 + (C_1 - C_0) * \left(\left(k_{ij} * t_l \right)^m \right) + \epsilon_{ij\ell} \\ k_{ij} = exp \left(ln(A) - \frac{E_a}{R * T_i} + B * RH_j \right) \\ \epsilon_{ij\ell} \sim N(0, \sigma^2) \end{cases}$$

• m=0.5, 1, 2, 3, 4

Weakly informative prior distributions

- $E_a \sim N(120, 25.5)$
- $ln(A) \sim N(35, 15)$
- $B \sim N(0.04, 0.025)$ for GK formulation
- $B \sim N(1, 0.375)$ for CL formulation
- $\sigma \sim Half Student t(3, 0, 2.5)$

Regularization

Improved Convergence

Jansser

Robustness

MODEL SELECTION FOR INITIAL STUDY

SELECTED MODEL RESULTS

Posterior summary of parameters

Model	Parameter	Estimate	SD	Lower	Upper
Power law GK m=0.5	InA	51.03	4.54	41.90	59.81
Power law GK m=0.5	Ea	143.66	13.06	117.46	168.94
Power law GK m=0.5	В	0.02	0.01	0.01	0.03
Power law GK m=0.5	σ	0.74	0.14	0.54	1.10

Jansser

MODEL SELECTION FOR FOLLOW-UP STUDY

SELECTED MODEL RESULTS

Posterior summary of parameters

Model	Parameter	Estimate	SD	Lower	Upper
Power law GK m=0.5	InA	52.93	3.45	46.00	59.58
Power law GK m=0.5	Ea	149.58	9.55	130.41	168.00
Power law GK m=0.5	В	0.01	0.00	0.01	0.02
Power law GK m=0.5	σ	0.21	0.03	0.16	0.28

Selected model based on LOOIC and WAIC

FORMULATING POWER PRIORS

LEVERAGING HISTORICAL ACCELERATED STABILITY DATA

Two classes of power priors

Power prior with fixed discounting parameter

Power prior with random discounting parameter (Normalized power prior)

pharmaceutical companies of Johnson Johnson

Power prior with fixed discounting parameter

 $\pi(\boldsymbol{\theta} \mid D_0, \boldsymbol{a}_0) \propto \frac{L(\boldsymbol{\theta} \mid D_0)^{\boldsymbol{a}_0} \pi(\boldsymbol{\theta})}{\int \{L(\boldsymbol{\theta} \mid D_0)^{\boldsymbol{a}_0} \pi(\boldsymbol{\theta})\} d\boldsymbol{\theta}}$

 $\propto L(\boldsymbol{\theta} \mid D_0)^{\boldsymbol{a_0}} \pi(\boldsymbol{\theta})$

- $\theta = (\ln(A), E_a, B, \sigma)$ is the set of model parameters
- $L(\theta \mid D_0)$ = is the likelihood from the historical data D_0
- $\pi(\theta)$ = is the initial prior for θ before the historical data D_0 are observed and
- a_0 is a discounting parameter ranging between 0 and 1
- *a*₀=0, 0.25, 0.5, 0.75, and 1

Industry-leading Statistical Expertise

Statistics and Decision Sciences

Details → Ibrahim and Chen (2000)

Normalized power prior

$$\pi(\boldsymbol{\theta}, a_0 \mid D_0) \propto \frac{L(\boldsymbol{\theta} \mid D_0)^{a_0} \pi(\boldsymbol{\theta}) \pi(a_0)}{c(a_0)}$$

$c(a_0) = \int L(\theta \mid D_0)^{a_0} \pi(\theta) \, d\theta$

- $\theta = (\ln(A), E_a, B, \sigma)$ is the set of model parameters
- $c(a_0)$ = is the normalsing constant
- $\pi(a_0)$ = the initial prior for a_0

Initial priors for a_0

POWER PRIOR WITH FIXED DISCOUNTING PARAMETER

RESULTS

Posterior summary of parameters

Model	Parameter	Estimate	SD	Lower	Upper
a0=0	InA	52.89	3.45	45.90	59.63
	Ea	149.45	9.56	130.15	168.20
	В	0.01	0.00	0.01	0.02
	σ	0.21	0.03	0.16	0.28
a0=0.25	InA	42.64	7.61	27.58	57.45
	Ea	121.60	20.64	80.72	161.80
	В	0.03	0.02	0.00	0.06
	σ	2.58	0.32	2.08	3.33
a0=0.5	InA	43.47	7.62	28.45	58.26
	Ea	122.59	20.77	81.96	163.57
	В	0.03	0.01	0.00	0.06
	σ	3.22	0.37	2.63	4.06
a0=0.75	InA	44.66	7.55	30.06	59.49
	Ea	125.01	20.57	85.23	165.72
	В	0.03	0.01	0.00	0.05
	σ	3.58	0.38	2.96	4.46
a0=1	InA	45.93	7.41	31.75	60.53
	Ea	127.82	20.32	88.94	167.68
	В	0.03	0.01	0.01	0.05
	σ	3.79	0.38	3.15	4.65

Long-term predictions

27

Estimating shelf-life

30°C/75% 1.1 1.0 Shelf Life >3 ye 1.1 ТT 1.1 helf Life 1.03 vears S = Probability of success Model 1.1 Shelf Life + 0.73 years a0=0 a a0=0.25 Shelf Life = vears 0.6 a0=0.5 1.1 a0=0.75 Shelf Life = 0.55vears a0=1 1.1 0.4 1.1 I. 1.1 1.1 1.1 . 1.1 300 600 900 0 Time (in days)

NORMALIZED POWER PRIOR

RESULTS

Posterior
summary of
parameters

Model	Parameter	Estimate	SD	Lower	Upper
a0~Beta(1, 1)	lnA	52.82	3.49	45.78	59.62
	Ea	149.28	9.66	129.79	168.07
	В	0.01	0.00	0.01	0.02
	σ	0.21	0.03	0.16	0.29
	a0	0.0001	0.0001	0.0000	0.0004
a0~Beta(5, 5)	InA	51.77	4.25	43.21	59.94
	Ea	146.40	11.73	122.82	168.99
	В	0.01	0.00	0.01	0.02
	σ	0.26	0.05	0.19	0.39
	a0	0.0008	0.0005	0.0002	0.0020
a0~Beta(10, 10)InA	48.41	6.01	35.82	59.70
	Ea	137.21	16.54	102.70	168.36
	В	0.01	0.01	0.00	0.03
	σ	0.46	0.25	0.27	1.16
	a0	0.0077	0.0165	0.0012	0.0348
a0~Beta(50, 50)InA	43.15	7.75	27.80	58.34
	Ea	122.18	20.87	81.11	163.78
	В	0.03	0.01	0.00	0.06
	σ	3.13	0.38	2.51	4.01
	a0	0.4502	0.0532	0.3482	0.5556

Long-term predictions

Statistics and Decision Sciences Industry-leading Statistical Expertise

Johnson & Johnson

Estimating shelf-life

Statistics and Decision Sciences

Summary

┨	The need to perform accelerated stability studies?	
---	--	--

• Save time and resources

Exploring the different kinetic models?

• Deserves careful treatment

Informative priors to consider?

• Power priors

Power prior with fixed discounting parameter

• When historical data is not compatible to the current data?

Normalized power prior

• Accounting for compatibility

What is next?

References

- Ibrahim JG, Chen MH. Power prior distributions for regression models. Statistical Science. 2000 Feb 1:46-60.
- Ibrahim JG, Chen MH, Gwon Y, Chen F. The power prior: theory and applications. Statistics in medicine. 2015 Dec 10;34(28):3724-49.
- Carvalho LM, Ibrahim JG. On the normalized power prior. Statistics in Medicine. 2021 Oct 30;40(24):5251-75.
- Genton, D., and U. W. Kesselring. "Effect of temperature and relative humidity on nitrazepam stability in solid state." *Journal of Pharmaceutical Sciences* 66, no. 5 (1977): 676-680.
- Clancy, Don, Neil Hodnett, Rachel Orr, Martin Owen, and John Peterson. "Kinetic model development for accelerated stability studies." *AAPS PharmSciTech* 18, no. 4 (2017): 1158-1176.

Thank You!

lansen PHARMACEUTICAL COMPANIES OF Johnson Johnson

Extra slides

Bayesian kinetic model (BKM): Second-order kinetics with GK formulation

$$\begin{cases} Y_{ijl} = C_0 + (C_1 - C_0) * \left(1 - \frac{1}{1 + k_{ij} * t_l}\right) + \epsilon_{ij\ell} \\ k_{ij} = exp\left(ln(A) - \frac{E_a}{R * T_i} + B * RH_j\right) \\ \epsilon_{ij\ell} \sim N(0, \sigma^2) \end{cases}$$

Bayesian kinetic model (BKM): Third-order kinetics with GK formulation

$$\begin{cases} Y_{ijl} = C_0 + (C_1 - C_0) * \left(1 - \frac{1}{\sqrt{1 + 2 * k_{ij} * t_l}} \right) + \epsilon_{ij\ell} \\ k_{ij} = \exp\left(ln(A) - \frac{E_a}{R * T_i} + B * RH_j \right) \\ \epsilon_{ij\ell} \sim N(0, \sigma^2) \end{cases}$$

Methods of model comparison

Leave-one-out cross-validation (LOO-CV)

- Expected Log Pointwise Predictive Density (elpd_loo)
- Effective Number of Parameters (p_loo)
- Leave-One-Out Information Criterion (looic)

Widely applicable or Watanabe-Akaike information criterion WAIC

- Expected Log Pointwise Predictive Density based on WAIC (elpd_waic)
- Effective Number of Parameters based on WAIC (p_waic)
- Watanabe-Akaike information criterion (waic)

lanss

Initial Study

Model selection

Model	elpd_loo	p_loo	looic	elpd_waic	p_waic	waic
Power law GK m=0.5	-25.19	4.76	50.38	-24.77	4.33	49.53
Power law GK m=1	-35.20	4.88	70.40	-34.42	4.10	68.84
Power law GK m=2	-47.53	3.77	95.06	-46.54	2.79	93.09
Power law GK m=3	-52.69	3.20	105.38	-52.18	2.69	104.36
Power law GK m=4	-55.44	2.07	110.88	-55.41	2.04	110.82
Power law CL m=0.5	-27.53	4.72	55.06	-27.05	4.23	54.09
Power law CL m=1	-38.13	5.59	76.26	-37.05	4.51	74.11
Power law CL m=2	-50.10	4.62	100.20	-48.93	3.46	97.86
Power law CL m=3	-54.62	3.17	109.24	-54.19	2.74	108.38
Power law CL m=4	-56.19	1.53	112.38	-56.02	1.36	112.04
1st Order GK	-34.68	4.93	69.36	-33.93	4.18	67.86
1st Order CL	-37.43	5.34	74.86	-36.64	4.55	73.27
2nd Order GK	-33.96	4.77	67.93	-33.34	4.15	66.68
2nd Order CL	-36.93	5.37	73.86	-36.09	4.53	72.18
3rd Order GK	-33.70	5.07	67.40	-32.91	4.28	65.82
3rd Order CL	-36.41	5.38	72.82	-35.61	4.59	71.23

- LOOIC and WAIC were used for model selection.
- Based on both criteria, Power law GK m=0.5 is selected
- As expected, Power law CL m=0.5 is the second good model.

Statistics and Decision Sciences

Predicted Vs Observed

janssen

Long-term predictions

Long-term stability

Estimating shelf-life

Follow-up study

Model selection

Model	elpd_loo	p_loo	looic	elpd_waic	p_waic	waic
Power law GK m=0.5	3.46	3.40	-6.92	3.58	3.28	-7.16
Power law GK m=1	-10.51	3.99	21.02	-10.10	3.58	20.19
Power law GK m=2	-35.61	3.68	71.22	-34.92	2.99	69.85
Power law GK m=3	-43.87	3.52	87.75	-42.73	2.38	85.46
Power law GK m=4	-47.39	2.88	94.77	-46.68	2.17	93.36
Power law Clancy m=0.5	3.07	3.54	-6.13	3.22	3.38	-6.45
Power law Clancy m=1	-9.93	3.34	19.87	-9.72	3.13	19.44
Power law Clancy m=2	-35.15	3.17	70.30	-34.56	2.59	69.13
Power law Clancy m=3	-43.11	2.85	86.21	-42.51	2.25	85.02
Power law Clancy m=4	-47.72	3.07	95.43	-47.40	2.75	94.80
1st Order GK	-10.05	3.88	20.10	-9.66	3.49	19.32
1st Order Clancy	-9.72	3.45	19.43	-9.46	3.19	18.92
2nd Order GK	-9.62	3.83	19.24	-9.29	3.51	18.59
2nd Order Clancy	-9.23	3.32	18.46	-9.04	3.14	18.09
3rd Order GK	-9.26	3.84	18.53	-8.96	3.53	17.92
3rd Order Clancy	-8.89	3.35	17.77	-8.68	3.14	17.36

- LOOIC and WAIC were used for model selection.
- Based on both criteria, Power law GK m=0.5 is selected
- As expected, Power law CL m=0.5 is the second good model.

Janssen

48

Predicted Vs Observed

Long-term predictions

Long-term stability

Estimating shelf-life

Fixed a0

Model comparison

Model	elpd_loo	p_loo	looic	elpd_waic	p_waic	waic
PowerLaw_GK_a0=0	3.42	3.42	-6.83	3.55	3.29	-7.10
PowerLaw_GK_a0=0.25	-60.24	0.63	120.48	-60.23	0.63	120.47
PowerLaw_GK_a0=0.5	-68.13	0.66	136.25	-68.12	0.65	136.24
PowerLaw_GK_a0=0.75	-72.38	0.70	144.76	-72.37	0.69	144.74
PowerLaw_GK_a0=1	-75.17	0.75	150.34	-75.16	0.74	150.32

53

janssen

Predicted Vs Observed

Statistics and Decision Sciences

Random a0

55

Model comparison

Model	elpd_loo	p_loo	looic	elpd_waic	p_waic	waic
PowerLaw_GK_a0~Beta(1, 1)	3.35	3.18	-6.69	3.47	3.06	-6.94
PowerLaw_GK_a0~Beta(5, 5)	1.30	2.48	-2.61	1.37	2.42	-2.73
PowerLaw_GK_a0~Beta(10, 10)	-12.41	3.99	24.82	-12.31	3.89	24.62
PowerLaw_GK_a0~Beta(50, 50)	-66.97	0.69	133.95	-66.97	0.69	133.93

Predicted Vs Observed

Statistics and Decision Sciences

janssen