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Types of stability studies

Real-time stability studies Accelerated stability studies

• A product is stored at recommended 
storage conditions

• Longer storage time (in months/years)

• A product is stored at elevated stress 
conditions

• Shorter storage time  (in days/weeks)
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Advantages of accelerated stability 
studies

Time & Cost Efficiency: 
Accelerated studies save 
time and resources.

Early Issue Detection: 
Identify stability 
problems early.

Regulatory Compliance: 
Expedite approvals.

Formulation 
Optimization: Improve 
product quality.



Initial accelerated stability data
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Pediatric
Tablet 

formulation

Different 
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Physical 
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Follow-up accelerated stability data
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Revised 
experimental 

design
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BAYESIAN KINETIC MODEL FORMULATION



Kinetics of degradation
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• Chemical degradation of a 

degradant 𝐶 𝑡  mechanism can 

be defined as:

𝑑𝐶 𝑡

𝑑𝑡
= 𝑘 ∗ 𝑓 𝐶 𝑡  

• Arrhenius equation

𝑘𝑖 = 𝐴 ∗ exp
−𝐸𝑎

𝑅 ∗ 𝑇𝑖

• 𝑘𝑖 = the rate of degradation 
depending on the 𝑖𝑡ℎ temperature 𝑇𝑖

• 𝐴 = the pre-exponential factor

• 𝐸𝑎 = the activation energy

• 𝑅 = 0.0083144 , the gas constant



Two humidity extended Arrhenius 
equations
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▪ GK (Genton and Kesselring 
formulation)

𝑘𝑖𝑗 = exp ln 𝐴 −
𝐸𝑎

𝑅 ∗ 𝑇𝑖
+ 𝐵 ∗ 𝑅𝐻𝑗

▪ 𝑩=Sensitivity parameter on the 

actual scale of the 𝒋𝒕𝒉 relative 
humidity (𝑹𝑯𝒋 in %)

▪ CL (Clancy et al. formulation)

𝑘𝑖𝑗 = exp ln 𝐴 −
𝐸𝑎

𝑅 ∗ 𝑇𝑖
+ 𝐵 ∗ l𝑛 𝑅𝐻𝑗

▪ 𝑩= Sensitivity parameter on the 

logarithmic scale of the 𝒋𝒕𝒉 relative humidity 
(𝑹𝑯𝒋 in %)
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Common kinetic models

First order

Second 
order

Third 
order

Power law



Bayesian kinetic model (BKM): First-order 
kinetics with GK formulation
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𝑌𝑖𝑗𝑙 = 𝐶0 + 𝐶1 − 𝐶0 ∗ 1 − 𝑒𝑥𝑝 −𝑘𝑖𝑗 ∗ 𝑡𝓁 + 𝜖𝑖𝑗𝓁

𝑘𝑖𝑗 = 𝑒𝑥𝑝 𝑙𝑛 𝐴 −
𝐸𝑎

𝑅 ∗ T𝑖
+ 𝐵 ∗ RH𝑗

𝜖𝑖𝑗𝓁 ~ 𝑁 0, 𝜎2

• 𝑌𝑖𝑗𝑙  = the observed degradation at the 𝑙𝑡ℎ timepoint 𝑡𝑙, the 𝑖𝑡ℎtemperature T𝑖  and the 𝑗𝑡ℎrelative humidity RH𝑗

• 𝐶0 = Amount of degradation as time tends to zero➔Fixed

• 𝐶1= Amount of degradation as time tends to +∞➔Fixed

• 𝜎2 = The variance of error 𝜖𝑖𝑗𝓁



Bayesian kinetic model (BKM): Power-law 
kinetics with GK formulation
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𝑌𝑖𝑗𝑙 = 𝐶0 + 𝐶1 − 𝐶0 ∗ 𝑘𝑖𝑗 ∗ 𝑡𝑙
𝑚

+ 𝜖𝑖𝑗𝓁

𝑘𝑖𝑗 = 𝑒𝑥𝑝 𝑙𝑛 𝐴 −
𝐸𝑎

𝑅 ∗ T𝑖
+ 𝐵 ∗ RH𝑗

𝜖𝑖𝑗𝓁 ~ 𝑁 0, 𝜎2

• m=0.5, 1, 2, 3, 4



Weakly informative prior distributions
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• 𝐸𝑎~𝑁 120, 25.5

• 𝑙𝑛 𝐴 ~𝑁 35, 15

• 𝐵~𝑁 0.04, 0.025  for GK formulation

• 𝐵~𝑁 1, 0.375  for CL formulation

• 𝜎~𝐻𝑎𝑙𝑓 − 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 − 𝑡(3, 0, 2.5)

Regularization

Improved Convergence

Robustness
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MODEL SELECTION FOR 
INITIAL STUDY

SELECTED MODEL RESULTS



17

Posterior summary of parameters

Model Parameter Estimate SD Lower Upper

Power law GK m=0.5 lnA 51.03 4.54 41.90 59.81

Power law GK m=0.5 Ea 143.66 13.06 117.46 168.94

Power law GK m=0.5 B 0.02 0.01 0.01 0.03

Power law GK m=0.5 𝝈 0.74 0.14 0.54 1.10

Selected model based on LOOIC and WAIC
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MODEL SELECTION FOR 
FOLLOW-UP STUDY

SELECTED MODEL RESULTS
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Posterior summary of parameters

Model Parameter Estimate SD Lower Upper

Power law GK m=0.5 lnA 52.93 3.45 46.00 59.58

Power law GK m=0.5 Ea 149.58 9.55 130.41 168.00

Power law GK m=0.5 B 0.01 0.00 0.01 0.02

Power law GK m=0.5 𝝈 0.21 0.03 0.16 0.28

Selected model based on LOOIC and WAIC
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FORMULATING POWER 
PRIORS

LEVERAGING HISTORICAL ACCELERATED STABILITY 
DATA
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Two classes of power priors

Power prior with fixed 
discounting parameter

Power prior with random 
discounting parameter 

(Normalized power prior )
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Power prior with fixed discounting parameter

• 𝛉 = ln A , 𝐸𝑎 , 𝐵, 𝜎  is the set of model parameters 

• 𝐿 𝜽 ∣ 𝐷0 = is the likelihood from the historical data 𝐷0 

• 𝜋 𝜽 =is the initial prior for 𝛉 before the historical data 𝐷0 are observed and

• 𝑎0 is a discounting parameter ranging between 0 and 1

• 𝑎0=0, 0.25, 0.5, 0.75, and 1

𝜋 𝛉 ∣ 𝐷0, 𝑎0 ∝
𝐿 𝜽 ∣ 𝐷0

𝑎0𝜋 𝜽

׬ 𝐿 𝜽 ∣ 𝐷0
𝑎0𝜋 𝜽 𝑑𝜽

 

∝ 𝐿 𝜽 ∣ 𝐷0
𝑎0𝜋(𝜽)

Details➔Ibrahim and Chen (2000) 
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Normalized power prior 

• 𝛉 = ln A , 𝐸𝑎 , 𝐵, 𝜎  is the set of model parameters

• 𝑐 𝑎0  = is the normalsing constant

• 𝜋 𝑎0  = the initial prior for 𝑎0

𝜋 𝛉, 𝑎0 ∣ 𝐷0 ∝
𝐿 𝜃 ∣ 𝐷0

𝑎0𝜋 𝜃 𝜋 𝑎0

𝑐 𝑎0

𝑐 𝑎0 = ׬ 𝐿 𝜃 ∣ 𝐷0
𝑎0𝜋 𝜃  𝑑𝜃



Initial priors for 𝑎0
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Model Parameter Estimate SD Lower Upper
a0=0 lnA 52.89 3.45 45.90 59.63

Ea 149.45 9.56 130.15 168.20
B 0.01 0.00 0.01 0.02
𝝈 0.21 0.03 0.16 0.28

a0=0.25 lnA 42.64 7.61 27.58 57.45
Ea 121.60 20.64 80.72 161.80
B 0.03 0.02 0.00 0.06
𝝈 2.58 0.32 2.08 3.33

a0=0.5 lnA 43.47 7.62 28.45 58.26
Ea 122.59 20.77 81.96 163.57
B 0.03 0.01 0.00 0.06
𝝈 3.22 0.37 2.63 4.06

a0=0.75 lnA 44.66 7.55 30.06 59.49
Ea 125.01 20.57 85.23 165.72
B 0.03 0.01 0.00 0.05
𝝈 3.58 0.38 2.96 4.46

a0=1 lnA 45.93 7.41 31.75 60.53
Ea 127.82 20.32 88.94 167.68
B 0.03 0.01 0.01 0.05
𝝈 3.79 0.38 3.15 4.65

Posterior 
summary of 
parameters
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Long-term predictions

Long-term stability data

Long-term storage condition
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Estimating shelf-life
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NORMALIZED POWER PRIOR

RESULTS
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Model Parameter Estimate SD Lower Upper
a0~Beta(1, 1) lnA 52.82 3.49 45.78 59.62

Ea 149.28 9.66 129.79 168.07
B 0.01 0.00 0.01 0.02
𝝈 0.21 0.03 0.16 0.29
a0 0.0001 0.0001 0.0000 0.0004

a0~Beta(5, 5) lnA 51.77 4.25 43.21 59.94
Ea 146.40 11.73 122.82 168.99
B 0.01 0.00 0.01 0.02
𝝈 0.26 0.05 0.19 0.39
a0 0.0008 0.0005 0.0002 0.0020

a0~Beta(10, 10) lnA 48.41 6.01 35.82 59.70
Ea 137.21 16.54 102.70 168.36
B 0.01 0.01 0.00 0.03
𝝈 0.46 0.25 0.27 1.16
a0 0.0077 0.0165 0.0012 0.0348

a0~Beta(50, 50) lnA 43.15 7.75 27.80 58.34
Ea 122.18 20.87 81.11 163.78
B 0.03 0.01 0.00 0.06
𝝈 3.13 0.38 2.51 4.01
a0 0.4502 0.0532 0.3482 0.5556

Posterior 
summary of 
parameters
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Long-term predictions

Long-term stability data

Long-term storage condition



32

Estimating shelf-life
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Summary

• Save time and resources
The need to perform accelerated stability studies?

• Deserves careful treatment

Exploring the different kinetic models?

• Power priors

Informative priors to consider? 

• When historical data is not compatible to the current data?

Power prior with fixed discounting parameter 

• Accounting for compatibility

Normalized power prior 
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What is next?

Simulation 
study

Other 
informative 

priors
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Extra slides



Bayesian kinetic model (BKM): Second-order 
kinetics with GK formulation
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𝑌𝑖𝑗𝑙 = 𝐶0 + 𝐶1 − 𝐶0 ∗ 1 −
1

1 + 𝑘𝑖𝑗 ∗ 𝑡𝑙
+ 𝜖𝑖𝑗𝓁

𝑘𝑖𝑗 = 𝑒𝑥𝑝 𝑙𝑛 𝐴 −
𝐸𝑎

𝑅 ∗ T𝑖
+ 𝐵 ∗ RH𝑗

𝜖𝑖𝑗𝓁 ~ 𝑁 0, 𝜎2



Bayesian kinetic model (BKM): Third-order 
kinetics with GK formulation
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𝑌𝑖𝑗𝑙 = 𝐶0 + 𝐶1 − 𝐶0 ∗ 1 −
1

1 + 2 ∗ 𝑘𝑖𝑗 ∗ 𝑡𝑙

+ 𝜖𝑖𝑗𝓁

𝑘𝑖𝑗 = 𝑒𝑥𝑝 𝑙𝑛 𝐴 −
𝐸𝑎

𝑅 ∗ T𝑖
+ 𝐵 ∗ RH𝑗

𝜖𝑖𝑗𝓁 ~ 𝑁 0, 𝜎2
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Methods of model comparison

Leave-one-out cross-validation 
(LOO-CV)

• Expected Log Pointwise 
Predictive Density (elpd_loo)

• Effective Number of Parameters 
(p_loo)

• Leave-One-Out Information 
Criterion (looic)

Widely applicable or Watanabe-
Akaike information criterion WAIC

• Expected Log Pointwise 
Predictive Density based on 
WAIC (elpd_waic)

• Effective Number of Parameters 
based on WAIC (p_waic)

• Watanabe-Akaike information 
criterion (waic)
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Initial Study



Model selection

43

• LOOIC and WAIC were used 
for model selection.

• Based on both criteria, 
Power law GK m=0.5 is 
selected

• As expected, Power law CL 
m=0.5 is the second good 
model.

Model elpd_loo p_loo looic elpd_waic p_waic waic

Power law GK m=0.5 -25.19 4.76 50.38 -24.77 4.33 49.53
Power law GK m=1 -35.20 4.88 70.40 -34.42 4.10 68.84

Power law GK m=2 -47.53 3.77 95.06 -46.54 2.79 93.09

Power law GK m=3 -52.69 3.20 105.38 -52.18 2.69 104.36

Power law GK m=4 -55.44 2.07 110.88 -55.41 2.04 110.82

Power law CL m=0.5 -27.53 4.72 55.06 -27.05 4.23 54.09

Power law CL m=1 -38.13 5.59 76.26 -37.05 4.51 74.11

Power law CL m=2 -50.10 4.62 100.20 -48.93 3.46 97.86

Power law CL m=3 -54.62 3.17 109.24 -54.19 2.74 108.38

Power law CL m=4 -56.19 1.53 112.38 -56.02 1.36 112.04

1st Order GK -34.68 4.93 69.36 -33.93 4.18 67.86

1st Order CL -37.43 5.34 74.86 -36.64 4.55 73.27

2nd Order GK -33.96 4.77 67.93 -33.34 4.15 66.68

2nd Order CL -36.93 5.37 73.86 -36.09 4.53 72.18

3rd Order GK -33.70 5.07 67.40 -32.91 4.28 65.82

3rd Order CL -36.41 5.38 72.82 -35.61 4.59 71.23



44

Predicted Vs Observed
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Long-term predictions
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Estimating shelf-life



47

Follow-up study



Model selection

48

• LOOIC and WAIC were 
used for model selection.

• Based on both criteria, 
Power law GK m=0.5 is 
selected

• As expected, Power law 
CL m=0.5 is the second 
good model.

Model elpd_loo p_loo looic elpd_waic p_waic waic
Power law GK m=0.5 3.46 3.40 -6.92 3.58 3.28 -7.16
Power law GK m=1 -10.51 3.99 21.02 -10.10 3.58 20.19
Power law GK m=2 -35.61 3.68 71.22 -34.92 2.99 69.85
Power law GK m=3 -43.87 3.52 87.75 -42.73 2.38 85.46
Power law GK m=4 -47.39 2.88 94.77 -46.68 2.17 93.36
Power law Clancy m=0.5 3.07 3.54 -6.13 3.22 3.38 -6.45
Power law Clancy m=1 -9.93 3.34 19.87 -9.72 3.13 19.44
Power law Clancy m=2 -35.15 3.17 70.30 -34.56 2.59 69.13
Power law Clancy m=3 -43.11 2.85 86.21 -42.51 2.25 85.02
Power law Clancy m=4 -47.72 3.07 95.43 -47.40 2.75 94.80
1st Order GK -10.05 3.88 20.10 -9.66 3.49 19.32
1st Order Clancy -9.72 3.45 19.43 -9.46 3.19 18.92
2nd Order GK -9.62 3.83 19.24 -9.29 3.51 18.59
2nd Order Clancy -9.23 3.32 18.46 -9.04 3.14 18.09
3rd Order GK -9.26 3.84 18.53 -8.96 3.53 17.92
3rd Order Clancy -8.89 3.35 17.77 -8.68 3.14 17.36
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Predicted Vs Observed
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Long-term predictions
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Estimating shelf-life
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Fixed a0
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Model comparison

Model elpd_loo p_loo looic elpd_waic p_waic waic

PowerLaw_GK_a0=0 3.42 3.42 -6.83 3.55 3.29 -7.10

PowerLaw_GK_a0=0.25 -60.24 0.63 120.48 -60.23 0.63 120.47

PowerLaw_GK_a0=0.5 -68.13 0.66 136.25 -68.12 0.65 136.24

PowerLaw_GK_a0=0.75 -72.38 0.70 144.76 -72.37 0.69 144.74

PowerLaw_GK_a0=1 -75.17 0.75 150.34 -75.16 0.74 150.32
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Predicted Vs Observed
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Random a0
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Model comparison

Model elpd_loo p_loo looic elpd_waic p_waic waic

PowerLaw_GK_a0~Beta(1, 1) 3.35 3.18 -6.69 3.47 3.06 -6.94

PowerLaw_GK_a0~Beta(5, 5) 1.30 2.48 -2.61 1.37 2.42 -2.73

PowerLaw_GK_a0~Beta(10, 10) -12.41 3.99 24.82 -12.31 3.89 24.62

PowerLaw_GK_a0~Beta(50, 50) -66.97 0.69 133.95 -66.97 0.69 133.93
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Predicted Vs Observed
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