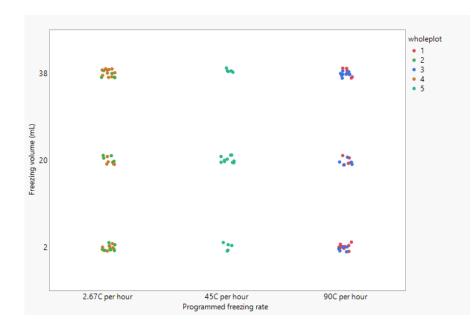
Advantages of using the Bayesian Framework for Modelling the relationship between Volume, Freezing Rate, Supercooling and Aggregation in Vaccines

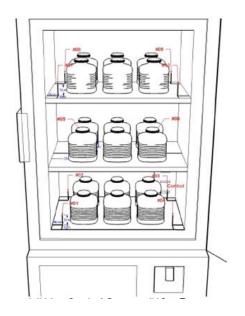
Francisca Galindo Garre

Principal Statistician Manufacturing and Applied Statistics (Statistical and Decision Sciences) 26/OCT/2023 Ulcerative colitis at 40x magnification

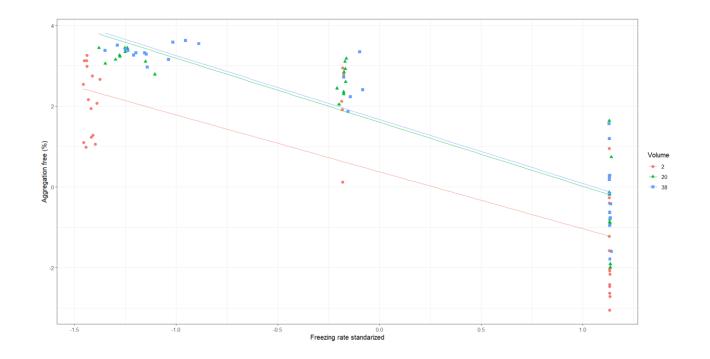
Introduction

Can aggregation be prevented by freezing larger volumes and using fast freezing ranges?

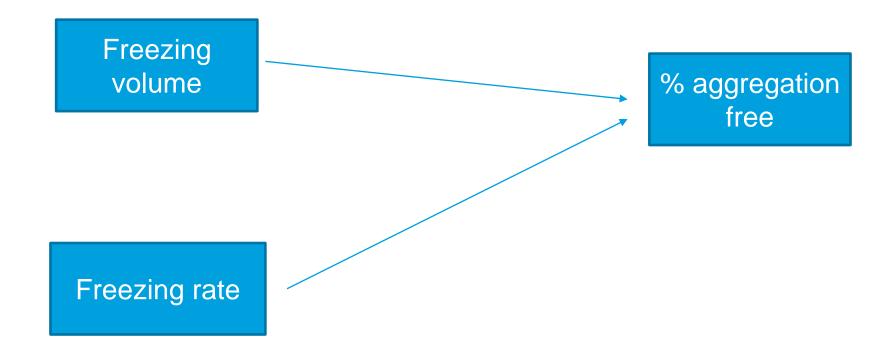



Design of experiments

Split plot design with 5 whole plots with 20 experimental runs per whole plot


Factors included: Freezing Volume and freezing rate Model: Response Surface Model (main and quadratic effects and second order interactions)

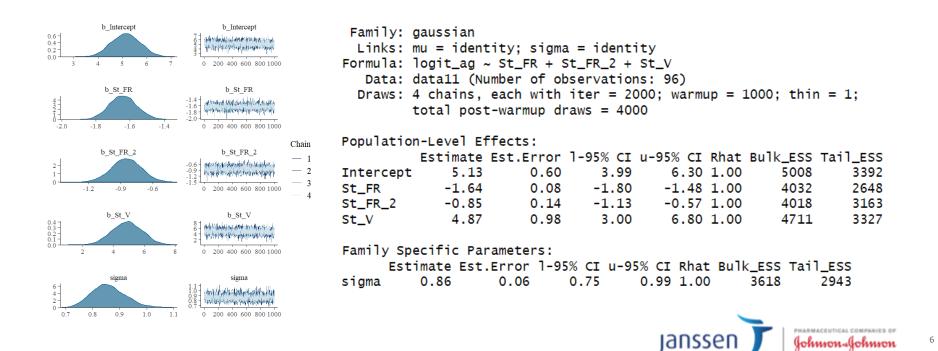
The experiment was performed with 3 different batches


Results aggregation free (%)

- Higher volume > lower % aggregation
- Higher freezing rate —>lower % aggregation
- Heterogeneous variance

Results aggregation

• The proposed design studies the direct influence of freezing volume and freezing rate on %aggregation free.



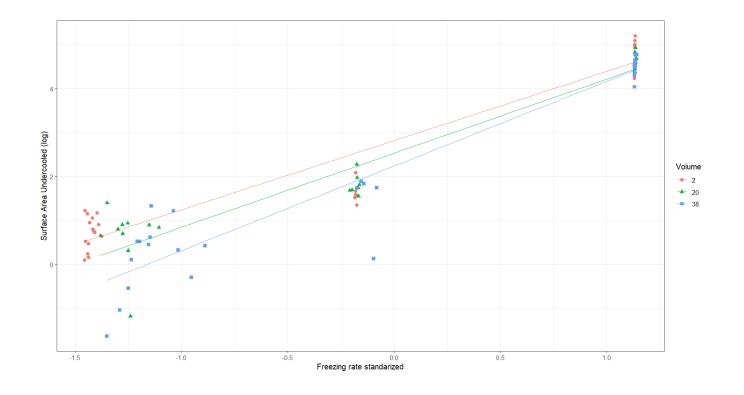
Results aggregation

A Student-t prior with 3 degrees of freedom was used for the intercept and a half-student-t prior with 3 degrees of freedom was used for the standard deviation.

Whole plot random effect was excluded because the between whole plots variation was very small compared to the within plot variation.

 $logit(y_i) \sim Normal(\mu_i, \sigma)$ $\mu_i = \alpha_1 + \beta FR + \varphi FR^2 + \gamma V$

Supercooling


Measurements performed during the experiments identify a new covariate that could be measured, but not directly manipulated. This covariate is called supercooling

Definition: It is the phenomenon where a substance remains in a liquid state at a temperature below its normal freezing point.

Measurements: surface area undercooled.

Supercooling

- Lower volume

 Larger area undercooled

Results aggregation free (%)

• Rather than a direct relationship between the experimental factors and %aggregation, volume and Freezing rage produce supercooling, which produces %aggregation.

Statistical Mediation

It is interesting to study the relationship between the covariate and the factors, and between the covariate and the outcome of the experiment because the covariate was a key to understand the kinetic aspects of the freezing of the product

- Mediation is a three variables system in which an independent variable causes a mediating variable, which, in turn, causes a dependent variable (Baron & Kenny, 1986; MacKinnon, 2008).
- The aim of mediation analysis is to determine whether the relation between the independent variable and the dependent variable is due, wholly or in part, to the mediating variable.

$$Y = \alpha_1 + \beta FR + \gamma V + e_1$$

$$M = \alpha_2 + \rho FR + \varphi V + e_2$$

$$Y = \alpha_3 + \delta M + \beta' FR + \gamma' V + e_3$$

Janssen T johmen-Johmen

Mediation analysis using Bayesian Regression model

• WHY?

- Probabilistic interpretation of the parameters and the conditional relationships between the variables.
- Predictive distributions of aggregation outside the study range.
- Possibility of updating the model with new information collected for larger volumes. ...

library(brms)

```
f1 <- bf(log_sup ~ St_FR + St_FR_2 + St_V)
```

```
f2 <- bf(logit_ag ~ St_FR + St_FR_2 + St_V + log_sup)
```

```
m12 <- brm(f1 + f2 + set_rescor(FALSE), data = data11, cores = 4)
```

mediation(m2)

- Direct effect: median value of posterior samples from treatment of the outcome model
- Mediator effect: median value of posterior samples from mediator of the outcome model.
- Indirect effect: median value of the multiplication of the posterior samples from mediator of the outcome model and the posterior samples from treatment of the mediation model.
- Total effect: median value of sums of posterior samples used for the direct and indirect effect.
- The proportion mediated is the indirect effect divided by the total effect.

lohmon-Johmon

Treatment: St_FR Mediator : log_sup Response : logitag

Effect		Estimate	I		95% ETI
Direct Effect (ADE) Indirect Effect (ACME) Mediator Effect Total Effect	 	-1.175 -0.658	i I	[-1.116, [-1.817, [-1.015, [-1.808,	-0.528] -0.295]

Proportion mediated: 71.62% [31.33%, 111.91%]

Treatment: St_V Mediator : log_sup Response : logitag

Effect		Estimate			95% ETI
Direct Effect (ADE) Indirect Effect (ACME) Mediator Effect Total Effect		1.274 -0.653	İ	[1.595, [0.471, [-1.008, [2.953,	2.410] -0.330]

pharmaceutical companies of Johnson-Johnson

13

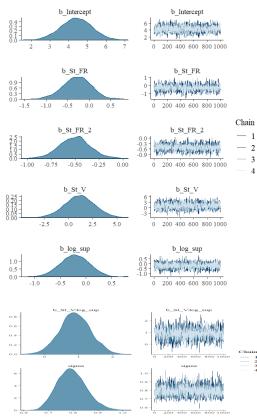
Proportion mediated: 26.27% [5.14%, 47.40%]

janssen

 $logit(y_i) \sim Normal(\mu_i, \sigma)$

 $Y_i = \alpha_1 + \beta FR + \varphi FR^2 + \gamma V + \delta M + \theta M V$

library(brms) M_1<-brm(logit_ag ~ St_FR + St_FR_2 + St_V + log_sup+ log_sup:St_V, prior=bprior, data= data11, cores=4)


. . .

The relationship between freezing rate and aggregation is mediated by supercooling, and the effect of supercooling on aggregation is higher for larger volumes.

Links: Formula:	gaussian mu = identity; sigma = identity logit_ag ~ St_FR + St_FR_2 + St_V + log_sup + log_sup:St_V data11 (Number of observations: 96)
Draws:	4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Population-Level Effects:							
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	4.412	0.829	2.776	6.014	1.001	2356	2644
St_FR	-0.284	0.336	-0.973	0.359	1.002	1886	1803
St_FR_2	-0.505	0.161	-0.826	-0.174	1.000	2335	2114
St_V	1.136	1.551	-1.946	4.184	1.002	2170	2435
log_sup	-0.221	0.280	-0.781	0.317	1.000	1990	2198
<pre>St_V:log_sup</pre>	0.890	0.450	0.016	1.771	1.001	1930	2093

Family	/ Specific	c Parameter	'S :				
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	0.794	0.059	0.688	0.918	1.000	2781	2622

Jansser

PHARMACEUTICAL COMPANIES OF

Johnson-Johnson

Validation runs for larger volumes

Programmed FR	Measured FR	Volume.(mL)		Predicted Old Model	Q2.5	Q97.5	Predicted new model	Q2.5	Q97.5
90C per hour	-84	100	3.44	5.25	3.28	7.20	3.84	1.63	6.05
90C per hour	-70	100	3.41	5.34	3.36	7.24	4.17	1.94	6.31
90C per hour	-70	100	3.44	5.37	3.46	7.32	4.27	2.15	6.47
90C per hour	-56	100	3.41	5.20	3.24	7.15	4.60	2.27	6.86
90C per hour	-68	100	3.48	5.35	3.42	7.26	4.48	2.12	6.81
90C per hour	-62	250	3.62	9.77	6.51	12.82	5.30	0.97	9.64
90C per hour	-62	250	3.62	9.79	6.66	12.92	5.12	0.41	9.80
90C per hour	-64	250	3.66	9.79	6.63	12.90	5.23	0.66	9.71
90C per hour	-64	250	3.71	9.80	6.60	12.97	4.70	-0.67	10.06
90C per hour	-68	250	3.71	9.84	6.73	13.10	4.75	-0.44	10.03
90C per hour	-53	500	3.66	17.02	11.17	22.82	4.38	-7.54	16.27
90C per hour	-55	500	3.75	17.10	11.39	22.79	3.79	-8.75	16.33
90C per hour	-53	500	3.66	17.02	11.25	22.81	4.02	-8.30	16.21
90C per hour	-57	500	3.66	17.15	11.38	23.00	4.11	-8.19	16.35
90C per hour	-75	500	3.58	17.29	11.41	23.05	5.74	-4.42	15.86
90C per hour	-71	500	3.58	17.27	11.43	23.26	5.20	-5.79	15.94
90C per hour	-63	500	3.62	17.24	11.31	23.09	3.76	-8.88	16.42
90C per hour	-69	500	3.66	17.30	11.48	23.00	5.72	-4.76	15.93
90C per hour	-77	500	3.62	17.28	11.52	23.04	6.13	-3.49	15.71

Summary

- The mediation analysis helped us to understand the relation between freezing rate, volume and aggregation and to build a model that could predict aggregation for larger volumes better than the original model.
- The relationship between freezing rate and percentage of aggregation free was mediated by supercooling and the relationship between supercooling and percentage of aggregation free changed across volumes.

Thank you very much!

Francisca Galindo Garre

fgalind1@its.jnj.com

