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P Scientific Journey on Omics

SCRNA-seq
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Recommendations of scRNA-seq Differential Gene Expression

Analysis Based on Comprehensive Benchmarking

Jake Gagnon 1, Lira Pi 2, Matthew Ryals 2, Qingwen Wan 2, Wenxing Hu 3, Zhengyu Ouyang %, Baohong Zhang **

and Kejie Li **
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SCcRNA-seq + scATAC-seq

Highly-connected elements of the zebrafish enveloping layer transcriptional

regulatory network are enriched for orofacial cleft risk genes

Sunil K Singh'?, Annika Helverson* Colin Kenny'##, Kaylia M Duncan'#, Lira Pi'¢, Edward
B Li", Sarah Curtis®, Eric Liao,*, Elizabeth Leslie®, Patrick Breheny?®, Robert A Cornell'?

Shield Stage multiome — Target Genes

RNA expression in EVL cells 3,787 Genes x 394 Samples

Prior Information Prior Matrix

ATAC-seq data from multiome 430 TFs x 3,787 Genes
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» Graphical Lasso (QLASSO)

logdet ©@ — tr(S0) — ||@ = P||;
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P Spatial Transcriptomics Data

4 gpatial transcriptomics (ST) Annotation Registration of » With spatial transcriptomics,
tissue sections L L
— Structure: we can characterize tissue organization and
ggg;gigante ?rchlltecture at the single-cell or subcellular resolution
SYyS!
—)> < p — | eve
- L Spatiotemporal v Exploration and — Quantification of expression: we can quantify the
g Poly-dT oligos and analysis of * visualization expression level of individual genes
) spatial barcode ST dat )
© - ata c Expression.
S @ 18 e wkzalb
0 []
§_g-§ g 68; — Interaction: it is possible to obtain information on the
58 @ o 8| transcriptomes of a single cell or a small group of cells,
(@) - o oo 5 o
B £ @ Bl - ' : ' while maintaining the information of where the cell (or
6.2 mm =2 35« Qifferentel expression group of cells) is located within the tissue. Enabling
- & %% ‘.iu.sg%ha\ us to understand how and why a specific cell or small
b & §§ ventral group of cells respond to the surrounding environment.
o
1.00 T Wpp=1 Mhn e « Ligand-receptor interaction between neighboring cells.

* Signaling pathways between neighboring cells.

» a. illustration of the proposed ST analysis workflow: experimental design
of statistical spatio-temporal data analysis (source: Aijo et al. bioRxiv
2019)

+ DEG between multiple conditions per location
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P Splotch and its Limitations

bioRxiv preprint dei: hitps-//doi.org/10.1101/757096; this version posted September 5, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 Intemational license.

it » Splotch was the most
Splotch: Robust estimation of aligned spatial temporal gene expression data. relevant methOd to
Authors resolve DEG discovery.

Tarmo Aijo, Silas Maniatis*, Sanja Vickovic*, Kristy Kang, Miguel Cuevas, Catherine Braine,

» Running the Python-Stan codes for
one single gene to test gene-
expression differentiation between
two groups given specific region took
several hours even in HPC!!

Hemali Phatnani, Joakim Lundeberg, Richard Bonneau®

First let us compare the expression of Gfap in ventral horn between WT P120 and G93A P120

# define the gene of interest
gene = 'Gfap'

# make sure we have analyzed it
assert gene in samples, 'Error: %s not found!'%(gene)

# define the Level of interest (WT P126 and G93A P120 are Level 1)
level = 'beta_level 1°

# define the variables of interest from that Level
beta_variables_of_interest = ['WT pl2@','G93A pl2e']

# define the aar of interest

aar_variable_of_interest = 'Vent_Horn'

» Splotch was developed on ST array
design, but our data was 10x Visium.,

# find the mappings from names to indices (Stan has no dictionaries)
beta_variable_indices = to_stan_variables(beta_mapping[level],beta_variables_of_interest)
aar_index = to_stan_variables(aar_names,aar_variable_of_interest)

Calculate the Savage-Dickey density ratio to quantify the difference

print("Approximated Bayes factor (BF) is %.4f"%(
savagedickey(samples[gene][level][:,beta_variable_indices[@],aar_index].flatten(),
samples[gene][level][:,beta_variable_indices[1],aar_index].flatten())))

Approximated Bayes factor (BF) is 468.7260

Gevbbbbbbbbbbiblblllbiblbibovvuvuvuvuvuvuovuoobbobooovuwbuwuw

https://github.com/tare/Splotch/blob/master/Tutorial.ipynb
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P Multi-level (Hierarchical) Spatial Design Using R-INLA

» The zero-inflated Poisson model is expressed as

#Priors

# half normal for level.2 and level.3 variations
sigma.prior.sex_mouse = "expression:

taud = 1;

sigma =exp(-theta/2);

p p }
i i S; /1 i 9 ~ ZIP S; A P 8 log_dens = log(2) - ©.5%log(2*pi) + ©.5*log(taul@);
)/L]'k ( Jker Lk ( JRTL ke P ) log_dens = log_dens - @.5*tau@*sigma”2;
log_dens = log_dens - log(2) - theta/2;

return (log_dens);

# half-normal for spot-level variation
sigma.prior.epsilon = "expression:

tau@ = 108/9; ##LP

sigma =exp(-theta/2);

log_dens = log(2) - ©.5*log(2*pi) + B.5*log(taud);
log_dens = log_dens - ©.5%tau@*sigma”2;

log_dens = log_dens - log(2) - theta/2;

return (log_dens);

Where y; ; . = the number of UMIs for i*" gene at k" spot on j* tissue section; s; = size
(scaling) factor; 4; ; , = rate parameter, ef = zero-inflation parameter

exp(Ay 1) = kaﬁi,g + By.g + Tenig) T ¥ijk + €ijk

# zero-inflation prior:
theta_prior <- list(theta = list(prior = "logitbeta", param=c(2,1)))
# CAR prior for log(precision parameter) ## LP
X <- seq(®@, 1500, by = @.1)
log_dens <- dinvgamma(x, shape = 1, rate = 1, log = TRUE)
invgamma_prior <- paste@("table: ",

paste(c(x, log_dens), collapse = " ")

)

Where X; , = binary indicator of treatment groups; index b: g denotes that biological
samples (mice) are nested within a treatment group; index t: (b: g) denotes nesting of
technical samples (multiple tissue sections) within mice.

) 6 b b b b b b LOLOLOLOLOLOLOLOLEOLEEOEEOS

.

inla_res.FM <- tryCatch({inla(count ~ @ + Level.l +

f(ID2, model "z", Z = Zlevel.2, hyper = sigma.prior.sex_mouse)+

f(ID3, model "z",Z = Zlevel.3,hyper = sigma.prior.sex_mouse) +

. . f(ID, model = "genericl™, Cmatrix = C, hyper = invgamma_prior)+ ##LP

» COﬂdItlona| AUtOI’egI’eSSIve (CAR) f({epsilon, model = "iid", hyper = sigma.prior.epsilon),

E=size factors vec[inla_index],

1 _1 control. fixed=1ist(

llJi,j|af,Tf,Wj”N(O,(T['Di(f_afl)j Wj)) ), mean = list("Level.1"
prec list("Level.1"

)s

data = inla_data, control.family= list(hyper = theta prior),num.threads=16,

family = "zeroinflatedpoissonl”,control.compute=list(config = TRUE))}, error=function(e) "FM failed!")

9.25)
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P> Results from Real Data
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» 16.5k genes were tested by two DE (differential expression) methods — doable by INLA, but Stan
« The different sets of DE testing probably came from different filtering application of CPC > 0.005 before/after sub-setting

contrast groups.

» Degree of concordance between two DE methods in terms of log2FC estimates across full set of tested genes.
NEBULA-HL estimates some log2FC close to zero for which INLA has estimated very large log2FC value.
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P> Appendix: Bayes Factor

#Reduced model with Level.l removed
inla_res.RM <- tryCatch({inla(count ~ @ +

+(ID2, model = "z", Z = Zlevel.2, hyper = sigma.prior.sex_mouse)+
+(ID3, model = "z",7Z = Zlevel.3,hyper = sigma.prior.sex_mouse) +
f(ID, model = "genericl™, Cmatrix = C, hyper = invgamma prior)+ ##LP
f(epsilon, model = "iid"™, hyper = sigma.prior.epsilon),

E=size factors vec[inla_index],

control.fixed=1ist(
mean list("Level.1"
prec list("Level.1"

)s

data = inla_data, control.family= list(hyper = theta prior),num.threads=16,

family = "zeroinflatedpoissonl”,contreol.compute=list({config = TRUE})}, error=function(e) "RM failed!")

),
9.25)

#Calculate BF MLIK full model MLIK minus reduced model MLIK
## Bayes Factor: LP
BF _list <- tryCatch({exp(inla_res.FMémlik[rownames(inla_res.FM¢mlik)=="1og marginal-likelihood (Gaussian)",1]-
inla_res.RM$mlik[rownames{inla_res.RMfmlik)=="1log marginal-likelihood (Gaussian)",1]1)},
error=function(e) "Model failed!")

Finally, the marginal likelihood can be use to compute Bayes factors (Gelman et al. 2013) to compare two

given models. The Bayes factor for models M; and model M, is given by

My y)  w(y | My)m(My)

Mz |y) w(y | Ma)m(Myz)
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