L'ORÉAL

Penalized Bayesian Methods for Product Ranking Using Both Positive and Negative References

Laloux, C. ${ }^{1}$, Boulanger, B. ${ }^{1}$, Bastien, P. ${ }^{2}$, Carlin, B. ${ }^{3}$, Monseur, A. ${ }^{1}$, Jouni, H. ${ }^{2}$
${ }^{1}$ Pharmalex Belgium, ${ }^{2}$ L’Oréal Research \& Innovation,
${ }^{3}$ PharmaLex US

Disclaimer

> The information provided during this presentation does not constitute legal advice. PharmaLex, and its parent Cencora, strongly encourage the audience to review available information related to the topics discussed during the presentation and to rely on their own experience and expertise in making decisions related thereto. Further, the contents of this presentation are owned by PharmaLex and reproduction of the slides used in today's presentation is not permitted without consent of PharmaLex.

Context and data

> Overall comparison of posterior mean efficacy distributions of 4 products with regards to
> One positive reference: maximum possible efficacy (not achievable in practice)
> One negative reference: fifth product known to have the worst efficacy
Each comparison summarized by one unique metric (then used to rank products)

Context and data

> Overall comparison of posterior mean efficacy distributions of 4 products with regards to
> One positive reference: maximum possible efficacy (not achievable in practice)
> One negative reference: fifth product known to have the worst efficacy
> Each comparison summarized by one unique metric (then used to rank products)
> Minimal risk mindset to define the metric; the best product must present a trade-off between having
$>$ 1) high probability to be above the negative reference
> 2) small uncertainty on the posterior distributions
$>$ 3) high chances to be like the positive reference

Step 1: (Quasi-)Normalization

$>$ Make the range of the θ_{i} independent of the data
$>$ Following steps can be run the same way for every data

Step 2: Probabilities to be comparable

Compute the probabilities for a product to be comparable to the positive reference accounting for its variability
> It is the inverse of the cumulative distribution function for each product

Step 3: Penalization of probabilities in step 2

> Penalized products that have a non-negligible probability to underperform the negative reference
> They represent higher risk
For each product, the penalization factor is multiplied by the probabilities derived in step 2

Step 4: Metric calculation

> AUC ?

Product	M	SD	P2	AUC
$\mathbb{P} 3$	-12.03	4.04	98.480	0.539
P2	-12.00	1.00	100.000	0.400
P1	-9.01	5.00	97.320	0.390
P4	-17.00	1.00	99.760	0.150

Step 4: Metric calculation

- AUC considering the hypothetical case of no knowledge as represented by a uniform distribution

> PHARMALEX

Thank you!

PharmaLex supports Treedom, a platform that enables us to plant trees and follow them online. Not only does that benefit the environment, but it also delivers on our social mission.

