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Background:
Challenges in Pediatric RCT

» Conducting RCTs in pediatric settings presents
several challenges.

» Limited sample sizes (Huff, 2017),
» Ethical considerations (Wightman, 2023),

> Discordances in expert opinion about )
treatment effect (Linney, 2019),

» Need to address multiple endpoints, i.e.
safety secondary outcomes (Gkiourtzis,

\_ 2023). y
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* RESCUE (REnal SCarring Urinary infEction) trial is a randomized controlled double-blind trial
* The study aims to evaluate the effect of adjunctive oral steroids to prevent renal scarring in young children and infants
with febrile urinary tract infections.

» Extensive scarring may progress to further renal injury with subsequent hypertension, decreased renal function, proteinuria,
and sometimes end-stage renal disease (Peters, 2010).

* Primary outcome is the difference in scarring proportion between amoxicillin standard antibiotic therapy versus standard
therapy + corticosteroids therapy.

* Secondary outcome acceptability of adjuvant steroid treatment in terms of the rate of discontinuation of treatment and
the reported side effects.
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Issues in the
Study Design in
Pediatric RCT:
The lesson
learned

* Patient retention

- Bayes:=. .
Issues ., Proposa als

* Advanced RCT and Bayesian
approaches (Laptok, 2017)

Highly informative * Power Prior Approaches and
RHOFS arising from the discounting factors (Ibrahim,
literature 2015)

Issues in Incorporating

Expert opinion « Semiparametric B-Spline priors
Secondary safety (Azzolina, 2022)

endpoints * Two endpoints Bayesian

Prior data conflict sequential design (Gayewsky,
T 2023)
Comunication issues
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Two endpoint Bayesian sequential design

. . i ™
A novel Bayesian adaptive design ST

incorporating both primary and secondary
endpoints for randomized |IIB chemoprevention

study of women at increased risk for breast
cancer

Byron J. Gajewski'?", Bruce F. Kimler??, Devin C. Koestler'?, Dinesh Pal Mudaranthakam'~, Kate Young'? and
Carol J. Fabian®?

Interim
Analysis

Both
endpoints
futile?

Only Parametric Priors?

Both
endpoints
uccess?

No
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Semiparametric Priors

1. Assuming to have p elicited quantiles y,, o Yo modeled by a linear combination of B-spline, the prior
distribution may be determined optimizing this objective function:

p

y1
f(0,m,S,b,y) = min_ E(ai—F(yai))zw |ty

Yo
i=1

F; <Fj;fori=—-m,..,S—1
and F_,,=0Fs=1

2. F is a spline having m degree with a sequence of S inner knot A = (A_,y, ..., Agoms1) L-

3. ¢ > 0 is a balancing factor penalizing the distance between the functions F(Yai) adapted to the expert
quantiles and the Uniform uninformative distribution in the domain [y,, y;].
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Design proposal

A novel Bayesian adaptive design s
incorporating both primary and secondary
endpoints for randomized IIB chemoprevention
study of women at increased risk for breast
cancer

Byron J. Gajewski'?", Bruce F. Kimler??, Devin C. Koestler'=, Dinesh Pal Mudaranthakam'?, Kate Young'? and
Carol J. Fabian®*

Semiparametric Priors

Simulate the design propriety
even if prior data conflict arise

Rescue Trial motivating example
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Rescue Questions posed to the experts

“Based on your experience, what is the probability that a
patient aged 0 to 2, with a value of procalcitonin >1 ug/L,
treated with the recommended antibiotic regimen, has
evidenced the presence of a renal scar event 6 months after the

acute episode?”

“Based on your experience, what is the probability that a
patient aged O to 2, with a value of procalcitonin >1 ug/L,
treated with the recommended antibiotic
regimen+dexametasone, has evidenced the presence of a
renal scar event 6 months after the acute episode?”
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Expert Opinions in Rescue Trial

Parametric Beta Priors

Opinion Opinion
Expert Control  Treatment Beta(a, 8)
1 0.3 0.5
2 0.25 0.25 a = aydy + 1
3 0.15 0.3 _ .
3 L o3 B = Body + 1 » * dg = 1 Informative
5 0.3 [(i-w 1\ L] * dy = 0.5 Low Informative
6 0.2 dog = 0_2 u U 1
7 0.2 0.3 : . : :
! o2 o - <1 )] * do = 0 Uninformative
ﬁo =lal——1 —1
U
L 0.26 0.35
o 0.08 0.5%
go s E Possible Prior-Data conflict
0
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Elicited Priors \Bay

Parametric Beta Semiparametric B Spline
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Trial design flowchart

“* ppr = P(cr)
Cy are the O’Brien & Fleming boundaries
Two-sided type | error of 5%.

*** Gajewski, 2022
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: ; ** d(cy) are the
Interim Analysis O’Brien & Fleming boundaries for k=2 stages

(Half enrollment) *** Gajewski, 2022

P(n;, —mp < 0) > @(cy)

Efficacy and Stop the trial
P(mgise < 0.2) > P(cq)**

P(n; —mp < 0) < 0.5%**
Futility — 1 ed and
P(m ;. <m) < 0.5***

Continue until

termination Pllesp =y <= L) & gl Stop the trial
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(- Data generation mechanism )
Mimicking Rescue trial S 1 m | t : P |
n =40, ...,300 per arm I u a Ion an
Heontror = 0.4
Heontrot — ltreat = 0; 0.18;0.2

\_ 1 jise = 0.18,...0.22 y
4

[ 10,000 simulated data ]

> 4
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Analysis Design Proprieties indicators

Two endpoints Bayesian Sequential design with
P y g & 1. Percentage of trials truly declaring treatment efficacy

* Semiparametric B-Spline _ _ : _
parar P 2. Percentage of trials declaring the treatment efficacy if the
* Parametric Beta priors

\_ Y, treatment does not work
¥ 3. Percentage of futility trials if the treatment is not effective
MCMC resampling: \ j
1. T[Zontrol from T control IXcontrol’
2. Tireatment TOM Tereatment | Xereatment
3. 7T:lisc from 7TclisctIXdisc’
4. ARR = Tt iontrol™ Tireatment
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Results: Empirical Power - Bayes:...

. Disc.rate=0.18 . Disc.rate=0.18 — Disc.rate=0.22 . Disc.rate =0.22
ARR =0.18 ARR =0.2 ARR =0.18 ARR =0.2

Parametric Informative Parametric Low-Informative Parametric Uninformative
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Semi-Parametric Informative Semi-Parametric Low-Informative Semi-Parametric Uninformative
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Proportions of Trials truly declaring treatment efficacy

Proportions of simulated trials declaring the treatment effect, ad interim or at the end of the
study, according to the sample size, simulation scenarios, and Prior Distributions
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Results: False discovery rate and - Bayes::...
Correct Futility Rate

@  Parametric Informative ® Parametric Uninformative @ Semi-Parametric Low-Informative = Parametric Informative = [Parametric Uninformative = Semi-Parametric Low-Informative
© Parametric Low-Informative @  Semi-Parametric Informative @  Semi-Parametric Uninformative = Parametric Low-Informative == Semi-Parametric Informative = Semi-Parametric Uninformative
Disc. rate = 0.18 Disc. rate = 0.22 Disc. rate =0.18 Disc. rate = 0.22
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Proportions of simulated trials truly early declaring the
futility ad interim, according to the sample size, simulation
scenarios, and Prior Distributions

Average False Discovery Rate (FDR) over the sample size
per simulation scenarios, and Prior Distributions
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Implications

* Enhanced Safety Monitoring: Bayesian Sequential design aids in
comprehensive evaluation of secondary safety endpoints, prioritizing
pediatric patient welfare.

* Improved Sensitivity: Semiparametric priors outperform parametric
priors, enabling precise identification of treatment effects in pediatric
populations.

 Strict Control of False Discoveries: Maintains a nominal false
discovery rate below 5%, ensuring reliable and trustworthy pediatric
trial results.

 Efficient Resource Allocation: Allows early stopping for futility,
optimizing resource utilization and expediting the development of
effective pediatric treatments.
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Sample size per arm (n}

Treatment Opinions

Number of Experts for
Treatment

Event rate in control arm

What’s next?

Control Opinions Control Event rate for

Expert 1

Number of Experts for
Control

0.46

Control Event rate for

Expert 2 Secondary endpoint rate

0.38

Enhancing Advanced

Design Communication

and Applicability via Web

Design Priors

[} .
A p p I Ca l I O I I ; The average event rate in control arm is: 0.272 +- 0.05 The average event rate in treatment arm is: 0.38 +- 0.06

Semiparametric Priors

Control Event rate for Acceptability rate

Expert 3

Number of Simulations

Control Event rate for
Expert4

Prior Informativeness

0. parameter

|
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Density
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Design Proprieties

The control event rate is 0.4 , while the assumed ARR is 0.18 The sample size per arm is 80 . The priors are defined in a Semiparametric (B-Spline) framework.
An interim assessment is provided at the half of enrollment. The trial is stopped early for efficacy if the probability that the ARR is lower than zero and the
probability that the discontinuation rate (secondary endpoint) is lower than an acceptable rate 0.2 are both higher than the stopping boundary, translated in
probabilities, as defined in the O'Brien and Fleming design. The Overall Power is 1 The False Discovery Rate (FDR] is mantained below 0.05.
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