

Bayesian Statistics & Real World Evidence: A Successful Example from CBER

Jennifer L. Kirk

October 24, 2024

BAYES 2024

DISCLAIMER

This presentation is an informal communication and represents my own best judgement. My comments do not bind or obligate FDA.

PERTUSSIS (WHOOPING COUGH)

- Highly contagious severe respiratory disease
- Infants at high risk of severe disease because airways are small
 - High risk of hospitalization and death
 - ~100 cases per year in infants (< 1 year old)
- Vaccines are highly effective at preventing disease
 - Herd immunity, though some declines recently (hesitancy)
 - Childhood vaccination starts at 6 months of age

www.fda.gov

MATERNAL IMMUNIZATION

- Immunization of pregnant person during pregnancy to protect newborn via
 - Passively transferred antibodies (placenta and breastmilk)
 - Cocooning (family members less likely to infect infant)
- CDC ACIP recommended off-label use for pertussis vaccines since 2012
 - Based on observational studies and scientific understanding
 - Recommends vaccination at 27-36 weeks (~ 3rd Trimester)
 - Despite recommendation, adoption is low in US (~40%)

www.fda.gov

MI FOR PERTUSSIS

- Public health priority to have labeling claim
 - Increase confidence in use, insurance coverage
 - Reflect scientific understanding and quantify benefit
- However, an RCT would be infeasible:
 - Placebo-controlled RCT unethical because of ACIP recommendation (no equipoise?)
 - Non-inferiority trial infeasible because no licensed comparator
 - Small number of cases per year adds difficulty

MI FOR PERTUSSIS

- Alternative: use RWD, *if* fit-for-purpose RWD exists
- Pertussis is a notifiable disease
 - CDC has lab-confirmed cases in US
- Off-label TDaP use for this indication
 - TDaP vaccines are licensed for use in US adults
 - CDC recommendation for off-label use

MI FOR PERTUSSIS: DATA (Skoff 2017)

- Retrospective case-control study of CDC surveillance data
- Age-matched controls (3:1) from same birth hospital
- Collected information on 3 most recent Td/TdaP exposures
 - Timing
 - Manufacturer/brand/lot
- Estimated vaccine effectiveness
 - overall
 - 3rd trimester
- No brand specific results

Skoff, et al. 2017. Impact of the US Maternal Tetanus, Diphtheria, and Acellular Pertussis Vaccination Program on Preventing Pertussis in Infants < 2 Months of Age: a Case-Control Evaluation, Clin Infect Dis, 65(12)

MI FOR PERTUSSIS: EXPOSURE DATA

- Exposure classified based on most recent Td/Tdap vaccination
 - Unexposed
 - Before pregnancy
 - 1st/2nd Trimester (~0-27 weeks)
 - 3rd Trimester (~28-40+ weeks)
 - After birth
- However, exposure could be ambiguous
 - Vaccine type (Td/TdaP) unknown
 - Many mothers were exposed multiple times, including during or after pregnancy
 - Ambiguous or unknown manufacturer/brand

MI FOR PERTUSSIS: DATA (Skoff 2017)

Pertussis Exposure Timing	Cases (%)	Controls (%)
Unexposed	111 (44)	276 (41)
Before Pregnancy	25 (10)	88 (13)
1 st /2 nd Trimester	7 (3)	33 (5)
3rd Trimester	18 (7)	109 (16)
After Birth	90 (36)	176 (26)

3rd Trimester Adjusted VEff: 77.7% (95% CI: -13.8%, 88.8%)

MI FOR PERTUSSIS: BY BRAND

- CDC's brand-agnostic results are promising (point estimate), but uncertain (wide CI)
- Brand-specific 3rd Trimester results required for labeling
- However, small number of 3rd trimester exposed participants in brand specific datasets

Vaccine	Summary (Exposed/Total)
Adacel	Cases: 5/101 Controls: 27/171
Boostrix	Cases: 4/108 Controls: 18/183

Note: Numbers here do not sum to totals shown on previous slide because of missing/ambiguous data

MI FOR PERTUSSIS: APPROACHES

- Adacel (Sanofi)
 - Conditional logistic regression of the data from infants whose mothers were unexposed or exposed to Adacel during the 3rd trimester
 - Vaccine Effectiveness (95% Cl): 88.0 (43.8, 97.4)
- Boostrix (GSK)
 - Bayesian analysis of the data from infants whose mothers were unexposed or exposed to Boostrix during the 3rd trimester using a prior based on a Bayesian meta-analysis

Bayesian Meta-Analysis: Historical Studies

- Published studies of Boostrix IPV (non-US formulation)
- Applicant submitted data to support comparability of the immune response to US and non-US Boostrix formulations
- Literature review yielded 4 studies with similar study designs and Boostrix-specific vaccine effectiveness estimates
 - 2 case-control studies
 - 2 case-coverage studies

CASE-CONTROL STUDIES

Study Design	Bellido-Blasco (Spain)	Saul (Australia)
Mat. Vax. Advice	Recommended, Jan 2015	Campaign, Apr 2015
Study Dates	Mar 2015-Feb 2016	Aug 2015 – Aug 2016
Mat. Vax. Timing	3 rd T, > 2wk before birth	1-3 rd T, > 2wk before birth
Case Definition	+ RT-PCR	Symptoms + lab confirm
Cases: Age, Tdap Exp.	< 3 mo, unvax	< 3 mo, not specified
Control:Case Matching	3:1 on age (± 15 days)	1:1 on birthdate (± 3 days)
Control Ascertainment	2 med pract, 1 matern clinic	1 public hosp. same district

CASE-COVERAGE STUDIES

Study Design	Andrews (England)	Uriarte (Spain)
Mat. Vax. Advice	Campaign, Oct 2012	Recommendation, Feb 2015
Study Dates	Sept 2014-Sept 2018	Feb 2015 – Jan 2016
Mat. Vax. Timing	2 nd -3 rd T, > 7 days before birth	3 rd T
Case Definition	Lab-confirmed	95% confirmed by PCR
Cases: Age	< 3 mo	< 3 mo
Coverage Data Source	CPRD	Immunization Data/Registry
Coverage Estimates	~60-80% stratified by mat age in years (< 28, 28-32, ≥33)	93.7%

Bayesian Meta-Analysis: Historical Studies

Study	Summary (Exposed/Total)	VEff (95% CI)
Bellido-Blasco	Cases: 5/22 Controls: 41/66	87% (34%, 98%)
Saul	Cases: 19/48 Controls: 33/48	64% (18%, 84%)
Andrews	Cases: 106/403	87% (84%, 90%)
Uriarte	Cases: 12/19	89% (72%, 96%)

Bayesian Meta-Analysis: Results

- Hyperpriors (on log-odds):
 - Mean: Normal(0, 1,000,000)
 - SD: Half-Normal(0, 0.5)
- Produced posterior distribution for VEff

Bayesian Meta-Analysis: Robustified Results

- Mixture of the meta-analysis and a vague prior:
 - Normal(0, σ)
 - σ: observed SE for log-odds of an individual subject from CDC Boostrix-specific data
- Mixture weights
 - 90% meta-analysis
 - 10% vague

Bayesian Analysis: Results

- VEff (95% Credible Interval) reported in the label:
 - 20% informative prior weight: 81.5 (12.9, 94.5)
 - 90% informative prior weight: 83.4 (55.7, 92.5)
- FDA requested several sensitivity analyses
 - Various prior mixing weights, leave-one-out for prior studies
 - Ambiguous/multiple exposures
 - Inclusion of participants with missing demographic data
 - Inclusion of participants with missing manufacturing/brand data
- Sensitivity results were consistent with those reported in the label

REAL-WORLD DATA CONSIDERATIONS

- Good candidate for RWD/RWE because of ethical issues and public health need
- Challenges with real-world data
 - Third-party data owner complicated review
 - Fixed, small sample size
 - Ambiguous data: no pre-specified way to address
- Access to data was key for FDA review

BAYESIAN ANALYSIS CONSIDERATIONS

- Justification of informative prior as relevant and specific to product and indication is critical
 - Immunogenicity data to justify application of non-US Boostrix VEff estimates
 - Boostrix-specific estimates of VEff, not just generic estimates for pertussis vaccines
- Needed more time for review under both IND and BLA
 - Time to come to a scientific consensus
 - Time for internal review of approach and data
- Label was complex
 - Concerns about health care providers' understanding of Bayesian statistics
 - How to accurately convey prior information

