

BAYES 2024

A Comprehensive Bayesian Double-Adjustment Approach to Dynamic Borrowing of External Data

Ming-Dauh Wang, PhD Bayer Pharmaceuticals

// Alfredo Farjat, Bayer // Akos Ferenc Pap, Bayer // Andreas Kaiser, Bayer // Chenshuang Lu, Bayer // James Potts, Bayer // Yuanyuan Ji, U of Nebraska

- // Bayesian dynamic borrowing of external data
- // Bayesian double-adjustment approach
- // Case analysis
- // Simulations
- // Discussion

Bayesian Dynamic Borrowing of External Data

A Brief Review

Bayesian Dynamic Borrowing Approaches A brief review

- // Methods addressing background/baseline differences
 - // PS matching for selection of patients: non-dynamic
 - // **PS-integrated methods**: use discounted external data as priors
- // Methods addressing outcome differences
 - // Elastic prior approach: discounts external data by the degree of outcome difference
 - // Random effects, hierarchical, shrinkage models: borrow through comodeling of current and external data by the assumption of exchangeability
 - // Commensurate prior approach: allows lack of exchangeability in comodeling

Power Prior Approach

Ibrahim and Chen (2000), Ibrahim et al (2015), Neuenschwander et al (2009)

// In Bayesian inference of parameter θ , likelihood $L(\theta|D)$ given current data D is analyzed with a power prior constructed from external data D_0 :

 $L(\theta|D_0)^{\alpha_0}\pi_0(\theta),$

 $L(\theta|D_0)$ is the likelihood given D_0 , $0 \le \alpha_0 \le 1$ is a scalar parameter, $\pi_0(\theta)$ is an initial prior

- // α_0 (fixed or random) controls the weight of influence of D_0 in the analysis of D; the higher, the more borrowing from D_0
- // When α_0 is assumed random (modified power prior), the correct inference would depend on whether priors for θ and α_0 are independently or jointly assigned
- // Not straightforward to assign a prior for α_0 , so suggest using fixed α_0 at various values to assess prior sensitivity in practice

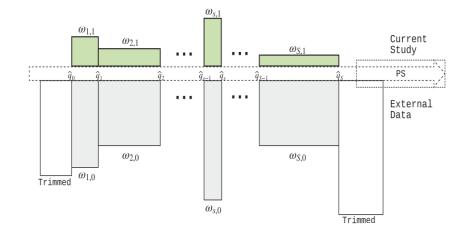
PS-integrated Power Prior Approach

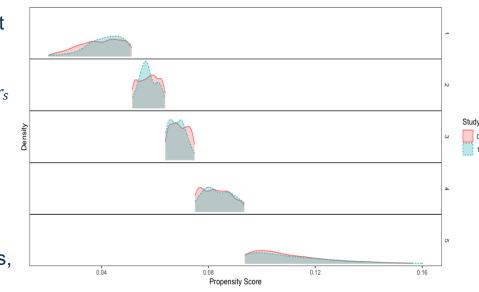
Wang et al (2019) - adjusts borrowing through power prior based on PS

- # Borrow A patients from external data to analyze current data for the inference of θ
- // Borrowing based on stratified similarity of PS
 - // **S1: Model and estimate** PSs of current and external patients
 - # S2: Trim off external patients whose PSs fall outside the range of PSs of current patients
 - **S3: Stratify** external patients into S (e.g. S=5) strata defined by PSs of current patients, $n_{0,s}$ in each stratum
 - // **S4: Calculate** the overlapping probability of PS distributions of current and external patients for each stratum, denoted as r_s
 - **S5: Adjust** the proportion to borrow from each stratum as $v_s = \frac{r_s}{\sum_{i=1}^{s} r_s}$
 - // S6: Specify the power parameter of external patients,

$$\alpha_s = \min(1, \frac{A}{n_{0,s}} v_s)$$

- // **S7: Analyze** to obtain stratum-specific posterior θ_s
- **S8:** Summarize the posterior estimation of θ as weighted mean of θ_s 's, $\sum_{s=1}^{S} \theta_s$ /S if same number of current patients in each stratum





7

BAYER

Elastic Prior Approach

Jiang et al (2021)

- // Discounts external data (D₀) by the degree of incongruence between current data and external data
 - // A congruence measure to assess similarity of current and external data, such as by a test statistic T for mean difference
 - // An elastic function g(T) is defined to determine how much to borrow, e.g. a logistic function
 - // Use g(T) to downweight prior information, e.g. in a normal case if the full prior from D_0 is $N(\theta_0, \tau^2)$, the elastic prior is $N(\theta_0, \tau^2/g(T))$

g(T) can be defined with clinical input



Bayesian Double-Adjustment Approach

A comprehensive integrated method

Proposed Double-Adjustment Approach

Adjust borrowing for both baseline and outcome differences

// Instead of assessing similarity of current data (D) and external data (D_0) by a statistical test as in Jiang et al (2021), calibrate the **posterior predictive probability (ppp)** of observing a value more extreme than a summary of D given D_0 :

$$ppp = \Pr(\widetilde{D_0}^s > D^s | D_0)$$

// If D_0 and D are similar, ppp would be closer to 0.5

- // Binary case: $S \rightarrow$ sample mean
- // Normal case: $S \rightarrow$ sample mean (if same variance) or standardized sample mean (if different variances)

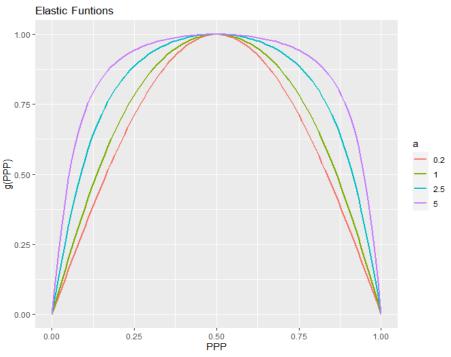
Proposed Double-Adjustment Approach

Adjust borrowing for both baseline and outcome differences

// Use the elastic function

 $g(ppp) = \frac{\arctan(a \times \sin(ppp * \pi))}{\arctan(a)}$

- to determine a further discounting factor for each stratum
- // The value of a can be tuned with clinical input
- // For example, g(ppp = 0.25) = 0.75, then *a* can be calculated to be 0.675



Proposed Double-Adjustment Approach

Adjust borrowing for both baseline and outcome differences

// At S6 of the PS-integrated power prior approach, further adjust the power prior parameter by ppp

// Overall adjustment: $\alpha_s = \min(1, \frac{A}{n_{0,s}}v_s * ppp)$

// Stratum-specific adjustment: $\alpha_s = \min(1, \frac{A}{n_{0,s}}v_s * ppp_s)$

A Case Analysis

Addressing both baseline and outcome differences

Case Analysis

A Phase 2 study borrowing external control (EC)

- // We applied the proposed double-adjustment BDB approach to a Ph2 trial, utilizing data from a real-world health care data source
- // The Ph2 trial has 2 active dose groups + control group
- // The outcome is a binary event variable
- // Borrow only EC to augment comparison with treatment
 groups combined

Summary of Current and External Data

A Phase 2 study borrowing external control (EC)

// A subset of EC was identified from the data source

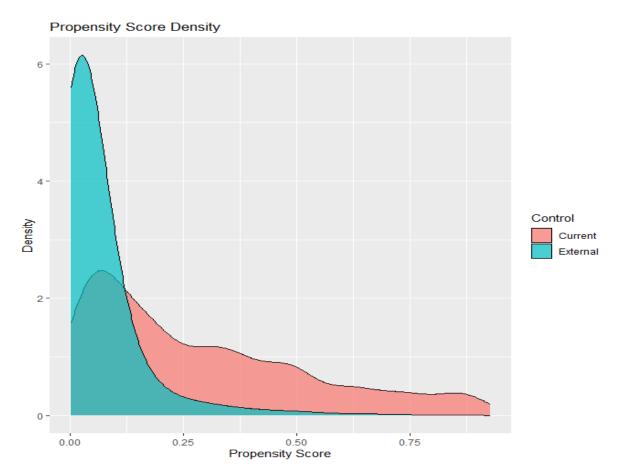
// Summary

	Current Treatment	Current Control	External Control
Number of Patients	505	250	3327
Number of Events	4	6	206
Event rate (%)	0.8	2.4	6.2

PS Modeling, Calculation, Trimming

Similarity of baseline data - current vs. external control

// Logistic regression was applied to current and external control data to obtain propensity scores // After trimming, 3013 of 3327 EC patients are kept



Stratification

A Phase 2 study borrowing external control data

// Current and external control patients are divided into S=5 strata, with equal number (n=50) of current control patients in each stratum

// Summary of Strata

		Stratum					
		1	2	3	4	5	
Current	No. of pts	2266	473	169	77	28	
	No. of events	139	31	12	6	1	
	Event rate (%)	6.1	6.6	7.1	7.8	3.6	
External	No. of pts	50	50	50	50	50	
	No. of events	2	0	0	2	2	
	Event rate (%)	4.0	0	0	4.0	4.0	

Overlapping, Weighing, Discounting

A Phase 2 study borrowing external control data

// Current and external control patients are divided into S=5 strata, with equal number (n=50) of current control patients in each stratum

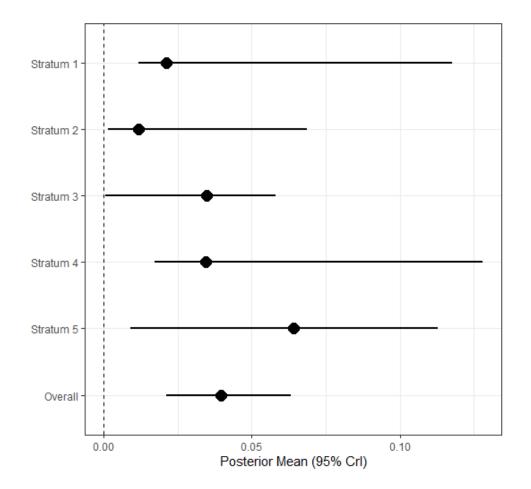
// Summary of EC

	Stratum						
	1	2	3	4	5		
r_{s}	0.66	0.91	0.92	0.95	0.74		
v_s	0.16	0.22	0.22	0.23	0.18		
a_s	0.017	0.115	0.326	0.736	1		
r_s : overlapping prob. Of PS dist'ns; v_s : r_s -adjust weight; a_s : power prior parameter							

Mapping, Discounting, Analysis

A Phase 2 study borrowing external control data

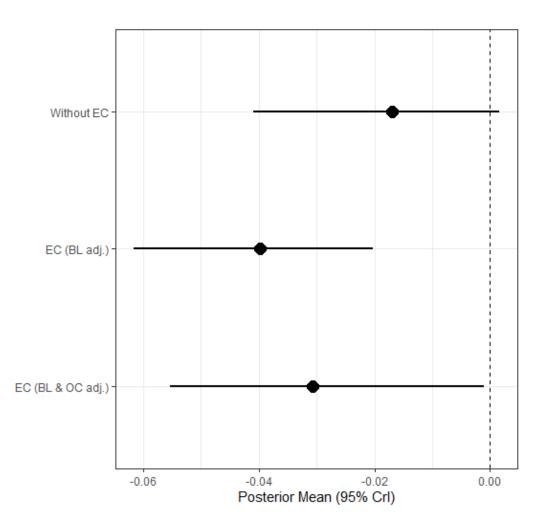
- // PPP of current control given EC: <0.01</pre>
- // Tuning parameter of the arctangent elastic function: a=25
- // Discounting for outcome
 difference: g(PPP)=0.28
- // Instead of A=250, borrowing
 from 0.28*A=70 EC patients



Comparison of Analyses BAYER

Comparison of analyses

- // Bayesian analysis was conducted for
 - // Without EC
 - // With EC (adj. for BL)
 - // With EC (adj. for BL & OC)
- # Excessive influence of EC was attenuated by adj. for outcome differences
- // Analysis with EC (adj. for BL & OC) shows higher variability, which might have been caused by small samples/events in strata



Simulations -Normal Response

Adjust for both baseline and outcome differences

Simulation Scenarios

- // Data generating scenarios modified from Wang et al (2019)
- // A vector X of 10 covariates
 - // $F_{X|Z} = MVN(\mu_z, \Sigma_z), z = 0$ (external), 1 (current)
 - // Σ_z : same variances (σ_z^2), same covariances ($0.1\sigma_z^2$)
 - // First 4 covariates are further converted to be binary by cut at 0
- // Outcome Y_i for subject i
 - $/\!\!/ Y_i | X_i, Z_i = \beta_0 + \beta^T X_i + \epsilon_i + O_i$
 - // ϵ_i is the random error
 - // O_i is a random outcome disturbance by unaccounted sources

Simulation Scenarios (Cont.)

// Data generating scenarios

//
$$\mu_1 = (1, ..., 1)^t$$
, $\mu_0 = (1.2, ..., 1.2)^t$
// $\sigma_1^2 = 1$, $\sigma_0^2 = 1.5$
// $\beta_0 = 0$, $\beta = (1, ..., 1)^t$, $\epsilon_i \sim N(0, 1)$
// $O_1 = 0$, $O_0 \sim N(d, var = 1.5)$
// Current $n = 100$, external $n = 1,000$

// Summary of simulation results:

Scenario	d	Α	$\widehat{oldsymbol{ heta}}$	Bias	Var	ESS	Cover	Width
1	2	20	9.37	0.008	0.058	12	0.82	0.96
2	2	100	9.59	0.222	0.064	59	0.62	0.99
3	1	20	9.37	0.002	0.061	16	0.81	0.97
4	1	100	9.53	0.161	0.057	82	0.70	0.94

 $\hat{\theta}$: posterior mean; Bias: deviation from mean of current data

ESS: effective sample size borrowed from EC

Cover: coverage probability of the true mean by 90% CrI; Width: width of 90% CrI // Borrowing is less with more outcome differences

Discussion

Remarks and Further work

Conclusion

- // Clinical justification is indispensable for application of dynamic borrowing
- // The proposed approach provides a reasonable solution for addressing both baseline and outcome differences if dynamic borrowing is warranted
- # Both clinical and statistical insights/inputs are needed for realistic and acceptable implementation of the proposed approach as required of other methods
- // Dynamic borrowing requires good planning, extensive simulation work, and well-engaged regulatory communication to pre-address potential concerns

Further Work

- // Investigate further on application to small-sample/rare-disease scenarios
 - // High vs. low event rates
- // Look into other data types, including time-to-event variables
- // Explore other clinically elicited elastic functions
- // Consider utilizing other types of priors than power prior for double adjustment

References

Key references

- Hobbs BP et al (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67: 1047-1056.
- // Ibrahim JG and Chen M-H (2000). Power prior distributions for regression models. Stat Sci 15:46-60.
- // Ibahim JG et al (2015). The power prior: theory and applications. Stat Med 34:3724-3749. <u>https://doi.org/10.1002/sim.6728</u>
- Jiang L et al (2021). Elastic priors to dynamically borrow information from historical data in clinical trials. Biometrics <u>https://doi.org/10.1111/biom.13551</u>
- // Liu M et al (2021). Propensity-score-based meta-analytic predictive prior for incorporating real-world and historical data. Stat Med 40:4794-4808.
- // Neuenschwander B et al (2009). A note on the power prior. Stat Med 28:3562-3566. <u>https://doi.org/10.1002/sim.3722</u>
- // Röver C and Friede T (2020). Dynamically borrowing strength from another study through shrinkage estimation. Stat Meth Med Res 29:293-308
- Wang C et al (2019). Propensity score-integrated power prior approach for incorporating real-world evidence in single-arm clinical studies. JBS <u>https://doi.org/10.1080/10543406.2019.1657133</u>

Thank you!

Questions?

