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Overview

● We want to understand what works, and for whom

● Several available approaches, each can fall short in certain scenarios

● Since the scenario (DGP) is unknown in a real setting, we look for 

methods that are robust to the scenario

● Ensembles improve robustness of estimation
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Background – Treatment effect

The treatment effect for an individual can be thought of as the contrast 

between their two potential outcomes – 𝑒𝑖 = 𝑦𝑖
𝑇=1 − 𝑦𝑖

𝑇=0

In an RCT  𝔼 𝑦𝑇=𝑖 = 𝔼 𝑦 𝑇 = 𝑖). Therefore:

𝐴𝑇𝐸 = 𝔼 𝑦 𝑇 = 1) − 𝔼 𝑦 𝑇 = 0)

This individual effect is unobservable!

Hence, a common focal point is the Average Treatment Effect: 

𝐴𝑇𝐸 = 𝔼 𝑦𝑇=1 − 𝑦𝑇=0 = 𝔼 𝑦𝑇=1 − 𝔼(𝑦𝑇=0)
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There’s more to it than just the average

However, the ATE is not always enough.

When effect heterogeneity is plausible, focus may 

shift to the Conditional ATE (CATE):

𝐶𝐴𝑇𝐸(𝑥) = 𝔼 𝑦𝑇=1 − 𝑦𝑇=0 | 𝑋 = 𝑥

However, for CATE (even in an RCT) averaging by 

treatment is not a practical approach:

𝐶𝐴𝑇𝐸 𝑥 = 𝔼 𝑦|𝑇 = 1, 𝑋 = 𝑥 − 𝔼 𝑦|𝑇 = 0, 𝑋 = 𝑥
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So What Can We Do?

● Causal Forest:

If averaging is infeasible at a single point 

level, how about averaging in “areas”?
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So What Can We Do?

● Causal Forest:

If averaging is infeasible at a single point 

level, how about averaging in “areas”?

● Meta-Learners:

Use global models to estimate the 

conditional outcomes (and other 

“nuisance” functions).
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Meta Learners

• S (Single)

Train an outcome model using both X and T:

𝜇 𝑥, 𝑡 = ෡𝔼 𝑌 𝑋 = 𝑥, 𝑇 = 𝑡]

Estimate CATE using the difference:

෣𝐶𝐴𝑇𝐸 𝑥 = 𝜇 𝑥, 𝟏 − 𝜇(𝑥, 𝟎)
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Meta Learners

• S (Single)

• T (Two)
𝜇0 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 0] 𝜇1 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 1]

෣𝐶𝐴𝑇𝐸 𝑥 = 𝜇1 𝑥 − 𝜇0(𝑥)
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Meta Learners

• S (Single)

• T (Two)

• X (Cross)

𝜇0 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 0] 𝜇1 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 1]

𝐷0 = {𝜇1 𝑥𝑖 − y𝑖 ∶ 𝑇𝑖 = 0} 𝐷1 = {y𝑖 −𝜇0 𝑥𝑖 ∶ 𝑇𝑖 = 1}

𝛿0(𝑥) = ෡𝔼 𝐷0 𝑋 = 𝑥] 𝛿1(𝑥) = ෡𝔼 𝐷1 𝑋 = 𝑥]

𝜋 x = ෠𝑃 𝑇 = 1 𝑋 = 𝑥)

෣𝐶𝐴𝑇𝐸 𝑥 = 𝜋 𝑥 𝛿0 𝑥 + 1 − 𝜋 𝑥 𝛿1(𝑥)
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Meta Learners

• S (Single)

• T (Two)

• X (Cross)

• R (Residualized)
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Meta Learners

• S (Single)

• T (Two)

• X (Cross)

• R (Residualized)

• DR (Doubly Robust)
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Meta Learners

• S (Single)

• T (Two)

• X (Cross)

• R (Residualized)

• DR (Doubly Robust)

• Can utilize any “base” model for learning the “nuisance” functions:

• GLMs

• Random Forests

• Boosting

• NN

• BART
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BART (Bayesian Additive Regression Trees)
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terminal predictions
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BART (Bayesian Additive Regression Trees)
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Iteratively fit 𝑔𝑘 𝑥 to:
𝑦 − σ𝑖≠𝑘𝑔𝑖(𝑥)

Fit is restricted by a 

regularizing prior on 

tree structure and 

terminal predictions

Excluding a burn-in, 

the chain of iterations 

provides a posterior 
sample for 𝑓 𝑥 : 

σ𝑔𝑖
𝑏 𝑥

𝑏=𝑏0

𝐵
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Bayesian Causal Forest (BCF)

A BART-tailored meta-learner with a disciplined approach for controlling the 

regularization of CATE explicitly:

𝜇 𝑥𝑖 = 𝐵𝐴𝑅𝑇 𝑥𝑖 , 𝜋(𝑥𝑖 )

𝐶𝐴𝑇𝐸 𝑥𝑖 = 𝐵𝐴𝑅𝑇 𝑥𝑖

𝑦𝑖 = 𝜇 𝑥𝑖 + 𝐶𝐴𝑇𝐸 𝑥𝑖 ∗ 𝑇𝑖 + 𝜖𝑖

Fitted using a Gibbs sampler that iteratively sets one of 𝜇 𝑥𝑖 ; 𝐶𝐴𝑇𝐸 𝑥𝑖

constant, and updates the other.

more heavily regularised
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Simulation Study

● Scenarios (DGP):

○ ACIC – well known and used benchmark dataset

○ PDL1 – A Mechanistic model of PDL1 pathophysiology in oncology

○ Multivariate linear additive model (prognostic + predictive)

○ Multivariate non-linear models (various kinds)

● Sample sizes: 100 – 1000, to represent clinical data

● Key performance measure: standardised RMSE * (RMSE / s.d.(CATE))

* Aka PEHE in this context
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No Single Dominant Model
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Which method is “best”?

In each DGP, different methods perform better/worse.

+

In reality the DGP is unknown.

+

Ability to validate is limited:

● Individual effects are unobserved

● In clinical datasets – samples are relatively small

=

We want methods that are robust to the scenario (DGP)
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Stacking (in classical prediction setting)

We want to combine models ො𝑦1… ො𝑦𝐾. 

We do so by regressing them on the true outcome (in a test sample)

ො𝑦 = ෍

𝑘=1

𝐾

𝜔𝑘 ො𝑦𝑖
𝑘 ∶ 𝜔 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜔 ෍

𝑖=1

𝑁

𝑦𝑖 −෍

𝑘=1

𝐾

𝜔𝑘 ො𝑦𝑖
𝑘

2

∶ 𝜔 ≥ 0

In the causal setting:

The “label” is not 𝑦𝑖 ,but e𝑖 = 𝑦𝑖
𝑇=1 − 𝑦𝑖

𝑇=0 , which is unobserved.

Several workarounds were suggested to substitute the missing label.
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Nuisance Model Stacking

While we cannot directly stack on the unobserved 

effect e𝑖, we can benefit from stacking models for the 

outcome y𝑖 (𝜇0 𝑥 , 𝜇1 𝑥 ).

In an X-Learner, we can also apply in the “pseudo-

outcomes” 𝐷𝑖 (𝛿0 𝑥 , 𝛿1 𝑥 ). 𝜇0 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 0] 𝜇1 𝑥 = ෡𝔼 [𝑌|𝑋 = 𝑥, 𝑇 = 1]

𝐷0 = {𝜇1 𝑥𝑖 − y𝑖 ∶ 𝑇𝑖 = 0} 𝐷1 = {y𝑖 −𝜇0 𝑥𝑖 ∶ 𝑇𝑖 = 1}

𝛿0(𝑥) = ෡𝔼 𝐷0 𝑋 = 𝑥] 𝛿1(𝑥) = ෡𝔼 𝐷1 𝑋 = 𝑥]

𝜋 x = ෠𝑃 𝑇 = 1 𝑋 = 𝑥)

෣𝐶𝐴𝑇𝐸 𝑥 = 𝜋 𝑥 𝛿0 𝑥 + 1 − 𝜋 𝑥 𝛿1(𝑥)
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Bayesian Stacking

Train “base” models 𝑓𝑘 𝑥 . 
Also train a “null” model 𝑓0 𝑥 = ത𝑦𝑡𝑟𝑎𝑖𝑛. 

𝑦𝑖 = 𝜔0𝑓0 𝑥𝑖 +෍

𝑘=1

𝐾

𝜔𝑘𝑓𝑘 𝑥𝑖 + 𝜀

𝜔0, 𝜔1, 𝜔2…𝜔𝐾~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 1,
1

10
,
1

10
…
1

10

𝜀~𝑁 0, 𝜎2

𝜎~𝐻𝑁 0,
𝑣𝑎𝑟(𝑦𝑡𝑟𝑎𝑖𝑛)

3



© Copyright 2024 PhaseV

Results
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