

PHASEV

Robust CATE Estimation Using Model Ensembles

- We want to understand **what works**, and **for whom**
- Several available approaches, each can fall short in certain scenarios
- Since the scenario (DGP) is unknown in a real setting, we look for methods that are robust to the scenario
- Ensembles improve robustness of estimation

PHASE

The treatment effect for an individual can be thought of as the contrast between their two potential outcomes - $e_i = y_i^{T=1} - y_i^{T=0}$

This individual effect is unobservable!

Hence, a common focal point is the **Average Treatment Effect**:

 $ATE = \mathbb{E}(y^{T=1} - y^{T=0}) = \mathbb{E}(y^{T=1}) - \mathbb{E}(y^{T=0})$

In an RCT $\mathbb{E}(y^{T=i}) = \mathbb{E}(y \mid T = i)$. Therefore: $ATE = \mathbb{E}(y \mid T = 1) - \mathbb{E}(y \mid T = 0)$

© Copyright 2024 PhaseV

There's more to it than just the average

However, the ATE is not always enough.

When effect heterogeneity is plausible, focus may shift to the **Conditional ATE** (CATE):

$$CATE(x) = \mathbb{E}(y^{T=1} - y^{T=0} | X = x)$$

However, for CATE (even in an RCT) averaging by treatment is not a practical approach:

 $CATE(x) = \mathbb{E}(y|T = 1, X = x) - \mathbb{E}(y|T = 0, X = x)$

PHASEV

So What Can We Do?

Causal Forest:

If averaging is infeasible at a single point level, how about averaging in "areas"?

So What Can We Do?

• Causal Forest:

If averaging is infeasible at a single point level, how about averaging in "areas"?

• Meta-Learners:

Use global models to estimate the conditional outcomes (and other "nuisance" functions).

• S (Single)

Train an outcome model using both X and T:

$$u(x,t) = \widehat{\mathbb{E}}[Y \mid X = x, T = t]$$

Estimate CATE using the difference:

 $\widehat{CATE}(x) = \mu(x, \mathbf{1}) - \mu(x, \mathbf{0})$

PHASEV

- S (Single)
- T (Two)

- S (Single)
- T (Two)
- X (Cross)

- S (Single)
- T (Two)
- X (Cross)
- R (Residualized)

- S (Single)
- T (Two)
- X (Cross)
- R (Residualized)
- DR (Doubly Robust)

- S (Single)
- T (Two)
- X (Cross)
- R (Residualized)
- DR (Doubly Robust)
- Can utilize any "base" model for learning the "nuisance" functions:
 - GLMs
 - Random Forests
 - Boosting
 - NN
 - BART

BART (Bayesian Additive Regression Trees)

 $g_1(x)$

 $g_K(x)$

init: $g_i(x) = \frac{y}{v}$ 0

Iteratively fit $g_k(x)$ to: $y - \sum_{i \neq k} g_i(x)$

Fit is restricted by a regularizing prior on tree structure and terminal predictions

© Copyright 2024 PhaseV

BART (Bayesian Additive Regression Trees)

© Copyright 2024 PhaseV

A BART-tailored meta-learner with a disciplined approach for controlling the regularization of CATE explicitly:

 $\mu(x_i) = BART(x_i, \pi(x_i))$

ΡΗΛSΞ

 $y_i = \mu(x_i) + CATE(x_i) * T_i + \epsilon_i$

Fitted using a Gibbs sampler that iteratively sets one of $\mu(x_i)$; CATE (x_i) constant, and updates the other.

- Scenarios (DGP):
 - ACIC well known and used benchmark dataset
 - PDL1 A Mechanistic model of PDL1 pathophysiology in oncology
 - Multivariate linear additive model (prognostic + predictive)
 - Multivariate non-linear models (various kinds)
- Sample sizes: 100 1000, to represent clinical data
- Key performance measure: standardised RMSE * (RMSE / s.d.(CATE))

* Aka PEHE in this context © Copyright 2024 PhaseV

No Single Dominant Model

Estimation Method

In each DGP, different methods perform better/worse.

+

In reality the DGP is unknown.

+

Ability to validate is limited:

- Individual effects are unobserved
- In clinical datasets samples are relatively small

We want methods that are robust to the scenario (DGP)

We want to combine models $\hat{y}^1 \dots \hat{y}^K$.

We do so by regressing them on the true outcome (in a test sample)

$$\hat{y} = \sum_{k=1}^{K} \omega^k \hat{y}_i^k \quad : \quad \omega = \operatorname{argmin}_{\omega} \left\{ \sum_{i=1}^{N} \left[y_i - \sum_{k=1}^{K} \omega^k \hat{y}_i^k \right]^2 : \omega \ge 0 \right\}$$

PHAS=V

In the causal setting:

The "label" is not y_i , but $e_i = y_i^{T=1} - y_i^{T=0}$, which is unobserved.

Several workarounds were suggested to substitute the missing label.

While we cannot directly stack on the unobserved effect e_i , we can benefit from stacking models for the outcome y_i ($\mu_0(x)$, $\mu_1(x)$).

In an X-Learner, we can also apply in the "pseudo-

outcomes" D_i ($\delta_0(x)$, $\delta_1(x)$).

PHASEV

Bayesian Stacking

Train "base" models $f^k(x)$. Also train a "null" model $f^0(x) = \overline{y}_{train}$.

$$y_i = \omega^0 f^0(x_i) + \sum_{k=1}^K \omega^k f^k(x_i) + \varepsilon$$

$$\omega^{0}, \omega^{1}, \omega^{2} \dots \omega^{K} \sim Dirichlet \left(1, \frac{1}{10}, \frac{1}{10} \dots \frac{1}{10}\right)$$
$$\varepsilon \sim N(0, \sigma^{2})$$

$$\sigma \sim HN\left(0, \frac{\sqrt{var(y_{train})}}{3}\right)$$

Results

© Copyright 2024 PhaseV

PHASEV

Causal Forest doi.org/10.1073/pnas.1510489113

Recursive partitioning for heterogeneous causal effects, S. Athey G. Imbens, 2016

Meta Learners doi.org/10.1073/pnas.1804597116

Metalearners for estimating heterogeneous treatment effects using machine learning, S. Kunzel et al, 2019

DR Learner www.aeaweb.org/articles?id=10.1257/aer.p20171038

Double/Debiased/Neyman Machine Learning of Treatment Effects, V. Chernozhukov et al, 2017

BART doi.org/10.1214/09-AOAS285

BART: Bayesian additive regression trees, H. Chipman, E. George, R. McCulloch, 2010

BCF 10.1214/19-BA1195

Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects, R. Hahn et al, 2020

Stacking https://hastie.su.domains/ElemStatLearn/

The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman, 2008, Chapter 8.8

Bayesian Stacking 10.1214/17-BA1091

Using Stacking to Average Bayesian Predictive Distributions, Y. Yao et al , 2018

