Simulation-based optimization of adaptive designs using a generalized version of assurance

Pantelis Vlachos, Valeria Mazzanti, Boaz Adler Pantelis.Vlachos@cytel.com

Introducing the problem

Assurance and more…

A case study

Q&A

Introducing the problem

How do I plan the right clinical trial?

Cytel

Trial Design Evolution

Challenges

- Design possibilities often limited from the beginning
- Time and resource constraints restrict number of designs and scenarios that can be considered
- Binary study-by-study decision of what tool to use

Benefit

- Optimal designs modeled against business strategy
- Cross-functional collaboration on design selection
- Accelerate speed to market

Cytel

What is assurance?

Hypothesis Test

$H_0: \delta = 0 \text{ vs } H_A: \delta = 0$

Where the parameter value δ is the treatment effect

Power

$P(Reject H_0 | \delta = \delta_A)$

Conditional probability of rejecting the null hypothesis) given an assumed parameter value $\delta = \delta_A$.

By setting power to some desired probability, we can solve for the sample size that will satisfy the requirement.

Cytel

Assurance (Expected Power)

$P(Reject H_0)$ $=$ \vert $\boldsymbol{\delta}$ $P(Reject H_0|\delta) f(\delta) d\delta$

Unconditional probability of rejecting the null hypothesis given an assumed distribution (prior) for the parameter value δ

Assurance (more generally)

$$
P('Successful trial') = \int_{\delta} P('Successful trial'|\delta) f(\delta) d\delta
$$

Unconditional probability of a 'successful trial' given an assumed distribution (prior) for the parameter value δ

$$
P(Reject H_0 and \hat{\delta} \ge \Delta)
$$

=
$$
\int_{\delta} P(Reject H_0 and \hat{\delta} \ge \Delta | \delta) P(\delta) d\delta
$$

Unconditional probability of rejecting the null hypothesis and achieving a value Δ or greater of the treatment effect given an assumed distribution (prior) for the parameter value δ

Cytel

Illustrative Example – A simulation-based approach

Illustrative Use Case

Study Description

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Overall Survival (OS) Design assumptions:

- Control median OS: 8 months
- Treatment effect: $HR = 0.7$
- One-sided alpha: 2.5%
- Power: 90%
- Enrollment rate: 20 patients/month

Sample Size: ~450, Events: ~330

Sample Size Information

Accrual and Study Duration

Cytel

Adding uncertainly in Treatment effect

Assurance:

$$
P(Reject H_0) = \sum_{HR} P(Reject H_0) HR = x) P(HR = x)
$$

An alternative display…

Average Power

What if we are also uncertain about control mOS and Accrual PoS = 0.75

Average Power

54 scenarios

Cytel

Expanding from Fixed to Adaptive Designs

Clinical Study Description and Fixed Design Requirements

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Median OS

- Control median OS: 8 months
- Treatment effect: $HR = 0.7$
- Enrollment rate: 20 patients/month
- 1 Interim Analysis for Efficacy at either **40%, 50% or 60%** IF
- Alpha-spending according to Gamma rule **(-4,-2,1)**
- Sample Size: 451, Events: 331
- Power: 90%
- One-sided alpha: 2.5%

Same priors…we now have 1 PoS calculation for each possible design

Score

Scenarios

- -

Probability of Success of each design, flat priors

Probability of Success of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Recap

- We started with $Pos = \sum_{x} P(reject H_0 | HR = x)P(HR = x)$
- We defined a scenario as $\{HR = x, mOS_C = y, r_{acc} = z\}$ and
- arrived at $Pos = \sum_{x} P(reject H_0 | Scenario = s) P(Scenarios = s)$

Performance Scoring to highlight strategic priorities

Models can be scored on performance criteria that reflect strategic goals

The score is a weighted function of performance criteria w_{φ} (P_{max} – $Power$) / (P_{max} - P_{min}) *+* w_{T} (Time - T_{min}) / (T_{max} - T_{min}) $+ w_C (Cost - C_{min}) / (C_{max} - C_{min})$

Selecting general design-agnostic criteria enable broad strategic comparisons

Scoring is meant to surface areas of interest in the design map that merit further exploration

Performance Score

$Score(Design | \theta)$ $= w_p f(Power) + w_T f(Time) + w_c f(cost)$

Conditional score for a Design given an assumed scenario θ is a weighted linear combination of Power, Time, and Cost/Sample Size

Robustness (Design)

$= | Score(Design|\theta)g(\theta)d\theta$ $\boldsymbol{\theta}$

Unconditional score for a Design given an assumed distribution (prior) for the scenario θ

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Cytel

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Find the Right Path for Your Study

TRIAL DESIGN SIMPLIFIED AND SCALED

ACCELERATE TO VALUE

A case study in Multiple Myeloma

Multiple Myeloma Ph 3 Study

Primary Outcome: Progression Free Survival

Optimization Aim:

Maintain adequate power while minimizing time to market

Questions of interest:

- What is an optimal design that accounts for uncertainty on patient recruitment?
- How will treatment effect variations impact the trial?
- What study design would most optimize cost/sample size?

Cytel Simulation Plan Template

Total number of design options in combination with scenarios (i.e., Models) = 7993 designs x 9 scenarios = 71937 models

Multiple Myeloma Study

~72 Million Simulated Trials

9 Scenarios

Enrollment

Design Comparison

Priorities

Imposing Constraints

Design Comparison – Reference Scenario

Design Comparison – All Scenarios

Cytel

Multiple Myeloma Ph 3 Study – Best design

Benefits

Benefits of using assurance in clinical trial design

- **1. Risk Management:** quantify the probability of a successful trial outcome given uncertainty about effect size and variance.
- **2. Resource Optimization:** by calculating the likelihood of trial success, assurance enables sponsors to optimize resource allocation, potentially saving time and money.
- **3. Strategic Decision Making:** assurance can guide strategic decision -making by providing a framework to evaluate the impact of different trial designs and scenarios.
- **4. Enhanced Understanding of Trial Metrics:** utilizing assurance in the design phase improves the understanding of key trial metrics and their interrelationships, such as power, effect size, sample size.
- **5. Stakeholder Communication:** assurance provides a clear and quantitative measure to communicate the probability of trial success to stakeholders, including investors, regulatory bodies, and ethics committees.

References

- Crisp, A., Miller, S., Thompson, D. and Best, N., 2018. Practical experiences of adopting assurance as a quantitative framework to support decision making in drug development. *Pharmaceutical Statistics*, *17*(4), pp.317-328.
- Dallow, N., Best, N. and Montague, T.H., 2018. Better decision making in drug development through adoption of formal prior elicitation. *Pharmaceutical Statistics*, *17*(4), pp.301-316.
- Grieve, A.P., 2023. Probability of success and group sequential designs. *Pharmaceutical Statistics, 23(4)*, pp.1-19.
- O'Hagan, A., Stevens, J.W. and Campbell, M.J., 2005. Assurance in clinical trial design. *Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry*, *4*(3), pp.187-201.
- Ren, S. and Oakley, J.E., 2014. Assurance calculations for planning clinical trials with time‐to‐event outcomes. *Statistics in Medicine*, *33*(1), pp.31-45.

Thank you

Pantelis Vlachos

Pantelis.Vlachos@cytel.com

VP Customer Success Cytel Inc. | Geneva, CH

<https://calendly.com/pantelis-vlachos/30min>

