Simulation-based optimization of adaptive designs using a generalized version of assurance

Pantelis Vlachos, Valeria Mazzanti, Boaz Adler Pantelis.Vlachos@cytel.com

Introducing the problem

Assurance and more...

A case study

Q&A

Introducing the problem

How do I plan the right clinical trial?

Cytel

Trial Design Evolution

Challenges

- · Design possibilities often limited from the beginning
- Time and resource constraints restrict number of designs and scenarios that can be considered
- Binary study-by-study decision of what tool to use

Benefit

- · Optimal designs modeled against business strategy
- Cross-functional collaboration on design selection
- Accelerate speed to market

What is assurance?

Hypothesis Test

$H_0: \delta = 0 vs H_A: \delta \neq 0$

Where the parameter value δ is the treatment effect

Power

$P(Reject H_0 | \delta = \delta_A)$

Conditional probability of rejecting the null hypothesis) given an assumed parameter value $\delta = \delta_A$.

By setting power to some desired probability, we can solve for the sample size that will satisfy the requirement.

Assurance (Expected Power)

$P(Reject H_0)$ = $\int_{\delta} P(Reject H_0|\delta)f(\delta)d\delta$

Unconditional probability of rejecting the null hypothesis given an assumed distribution (prior) for the parameter value δ

Assurance (more generally)

$$P('Successful trial') = \int_{\delta} P('Successful trial'|\delta)f(\delta)d\delta$$

Unconditional probability of a 'successful trial' given an assumed distribution (prior) for the parameter value δ

$$P(Reject H_0 \text{ and } \widehat{\delta} \ge \Delta)$$

= $\int_{\delta} P(Reject H_0 \text{ and } \widehat{\delta} \ge \Delta | \delta) P(\delta) d\delta$

Unconditional probability of rejecting the null hypothesis and achieving a value Δ or greater of the treatment effect given an assumed distribution (prior) for the parameter value δ

Cytel

Illustrative Example – A simulation-based approach

Illustrative Use Case

Study Description

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Overall Survival (OS) Design assumptions:

- Control median OS: 8 months
- Treatment effect: HR = 0.7
- One-sided alpha: 2.5%
- Power: 90%
- Enrollment rate: 20 patients/month

Sample Size: ~450, Events: ~330

Test Parameters							
Design ID	fixed0.7-20subjs						
Design Type	Superiority						
Number of Looks	1						
Test Type	1-Sided						
Specified a	0.025						
Power	0.90053						
Model Parameters							
$HR = \lambda_t / \lambda_c$							
Under H0	1						
Under H1	0.7						
Med. Surv. Time Control (m _o)	8						
Med. Surv. Time Treatment (mt)	11.429						
Var (Log HR)	Null						
Allocation Ratio (n _t /n _c)	1						
Accrual / Dropouts Paramet	ers						
Accrual Rate	20						
Dropout	No						

Sample Size Information

Sample Size (n)	451
Treatment (n_t)	226
Control (n_c)	225
Events (s)	331
Treatment (s_t)	153
Control (s_c)	178
Information (I)	82.75

Accrual and Study Duration

Accrual Duration	22.55
Max. Study Duration	31.145

Adding uncertainly in Treatment effect

HR	Vague Prior	Clinical Prior
0.65	20%	27%
0.70	20%	37%
0.75	20%	23%
0.80	20%	10%
0.85	20%	3%

Assurance:

$$P(Reject H_0) = \sum_{HR} P(Reject H_0 | HR = x) P(HR = x)$$

Ass <u>u</u> rance (Probabil	lity of Success)	56		
Prior Distribution for:	Log Hazard Ratio (δ) 🗸	Distribution:	User Specified-R	~
File Information for δ				
R File: C:\Users	\Pantelis.vlachos\Desktop\/	Browse		
R Function: HR		<u>V</u> iew		

An alternative display...

Average Power

What if we are also uncertain about control mOS and Accrual PoS = 0.75

Average Power

54 scenarios

Cytel

Expanding from Fixed to Adaptive Designs

Clinical Study Description and Fixed Design Requirements

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Median OS

- Control median OS: 8 months
- Treatment effect: HR = 0.7
- Enrollment rate: 20 patients/month
- 1 Interim Analysis for Efficacy at either 40%, 50% or 60% IF
- Alpha-spending according to Gamma rule (-4,-2,1)
- Sample Size: 451, Events: 331
- Power: 90%
- One-sided alpha: 2.5%

Same priors...we now have 1 PoS calculation for each possible design

Score

Scenarios

_ _

Probability of Success of each design, flat priors

Fixed			GSD							
	IF	40		50			60			
	gamma	-4	-2	1	-4	-2	1	-4	-2	1
68.3%	Probabi lity of Success	68.8%	68.3%	66.3%	68.7%	68.1%	65.9%	68.7%	68.2%	66.0%

Probability of Success of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed			GSD								
	IF		40			50			60		
	gamma	-4	-2	1	-4	-2	1	-4	-2	1	
73.5 %	Probability of Success	73.9%	73.4%	71.1%	73.8%	73.2%	70.7%	73.9%	73.2%	70.8%	

Recap

- We started with $PoS = \sum_{x} P(reject H_0 | HR = x)P(HR = x)$
- We defined a scenario as $\{HR = x, mOS_C = y, r_{acc} = z\}$ and
- arrived at **PoS** = $\sum_{x} P(reject H_0 | Scenario = s) P(Scenario = s)$

Performance Scoring to highlight strategic priorities

Models can be scored on performance criteria that reflect strategic goals

The score is a weighted function of performance criteria $w_{\mathcal{P}} (\mathcal{P}_{max} - \mathcal{P}ower) / (\mathcal{P}_{max} - \mathcal{P}_{min})$ $+ w_T (\mathcal{T}ime - \mathcal{T}_{min}) / (\mathcal{T}_{max} - \mathcal{T}_{min})$ $+ w_C (Cost - C_{min}) / (C_{max} - C_{min})$

Selecting general design-agnostic criteria enable broad strategic comparisons

Scoring is meant to surface areas of interest in the design map that merit further exploration

Performance Score

Score (Design $|\theta$) = $w_P f(Power) + w_T f(Time) + w_C f(cost)$

Conditional score for a Design given an assumed scenario θ is a weighted linear combination of Power, Time, and Cost/Sample Size

Robustness (Design)

$= \int_{\theta} Score(Design|\theta)g(\theta)d\theta$

Unconditional score for a Design given an assumed distribution (prior) for the scenario θ

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed			GSD									
	IF		40			50			60			
	gamma	-4	-2	1	-4	-2	1	-4	-2	1		
Robu	stness	46.1%	50.6%	56.1%	47.5%	50.8%	54.0%	46.8%	48.6%	49.9%		

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed			GSD							
	IF		40			50	<u>,</u>		60	
	gamma	-4	-2	1	-4	-2	1	-4	-2	1
Robu	stness	46.1%	50.6%	56.1%	47.5%	50.8%	54.0%	46.8%	48.6%	49.9%

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Robustness score of each design, informative prior for HR, flat prior for Ctrl mOS and Accrual

Fixed		GSD								
	IF		40			50			60	
	gamma	-4	-2		-4	-2		-4	-2	
Robu (unequal	stness weights)	46.1%	50.6%		47.5%	50.8%		46.8%	48.6%	

Score = 40%*Power + 30%*Duration + 30%*Sample Size

Find the Right Path for Your Study

TRIAL DESIGN SIMPLIFIED AND SCALED

ACCELERATE TO VALUE

A case study in Multiple Myeloma

Multiple Myeloma Ph 3 Study

Reference Design	Inputs			
Planned Sample Size	800			
Planned Number of Events	227			
Allocation Ratio	1:1			
Targeted Treatment Effect (HR)	0.65			
Control Median Survival Time	20 months			
Type-1 error (1-sided)	0.025			
Target Power	85%			
Number of Interim Analyses	1			
Timing of Interim Analysis	70%			
Efficacy Stopping Rule	LD-OBF			
Futility Stopping Rule	LD-OBF			

Primary Outcome: Progression Free Survival

Optimization Aim:

Maintain adequate power while minimizing time to market

Questions of interest:

- What is an optimal design that accounts for uncertainty on patient recruitment?
- How will treatment effect variations impact the trial?
- What study design would most optimize cost/sample size?

Cytel Simulation Plan Template

Design Options	Population Scenarios					
Type 1 error: 1 sided 0.025	True underlying control response rates: 20m PFS (vary?)					
Allocation Ratios: 1:1	True underlying treatment effects: 0.60, 0.65, 0.67					
Number of subjects: 700: <mark>800</mark> :20	Dropout rate: 0					
Number of events (if TTE): 130,162, 182, 210, <mark>227</mark> , 263						
Statistical Design: GSD, GSD with SSR	Enrollment Patterns					
Number of interim analyses: 1IA	Enrollment Rates: (Number of periods, starting at time, average					
Timing of interim analyses: 65%, <mark>70%,</mark> 75%	enrollment rate)					
Efficacy Stopping Rules/Alpha Spending Function: OBF	20pts/mo, 25pts/mo, 30pts/mo					
Futility Stopping Rules/Beta Spending Function: OBF, none	Average Cost per Patient					
Promising Zone (if applicable): min = 0.3, max = 0.8, 0.9						
Target Conditional Power (if applicable): 90%, 99%						
Max Number of Subjects/Events (if applicable): 1.2, 1.3, 1.4						

Total number of design options in combination with scenarios (i.e., Models) = 7993 designs x 9 scenarios = 71937 models

Cytel

Multiple Myeloma Study

~72 Million Simulated Trials

9 Scenarios

Enrollment

Design Comparison

Priorities

33

Imposing Constraints

Filters Test Scenarios	31 R	Results of Reference Scenario		
New Filter Set - Sa	ave As	Avg. Sample Size 594 (542 - 1,040)	Power 86.1%	Avg. Duration (Months) 23.7 (21.6 - 28.1)
Add Filter		Avg. Sample Size 594 (542 - 1,040)	Power 86.1%	Avg. Duration (Months) 23.7 (21.6 - 28.1)
Reference Scenario		Avg. Sample Size 594 (519 - 864)	Power 86.1%	Avg. Duration (Months) 23.7 (20.8 - 30.4)
19.317 0 24		Avg. Sample Size 595 (542 - 988)	Power 86.3%	Avg. Duration (Months) 23.8 (21.7 - 30.4)
		Avg. Sample Size 595 (519 - 864)	Power 86.1%	Avg. Duration (Months) 23.8 (20.8 - 30.7)
POWER (%)		Avg. Sample Size 596 (519 - 864)	Power 86.4%	Avg. Duration (Months) 23.8 (20.8 - 29.4)
86 0-0 96.9		Avg. Sample Size 596 (542 - 988)	Power 86.2%	Avg. Duration (Months) 23.8 (21.7 - 29.3)
		Avg, Sample Size	Power	Avg. Duration (Months)

Design Comparison – Reference Scenario

Only Show Differences	BestOverall	BestUnderConstraints	Reference Design			
Outputs						
Score	0.684	0.619	0.549			
Avg Study Duration	19.734 Months	23.73 Months	25.345 Months			
Power	70.8%	86.1%	86.3%			
Avg Sample Size	493.601	593.422	633.729			
Avg Number of Events	117.403	162.56	182.596			
Avg Accrual Duration	19.694 Months	23.69 Months	25.304 Months			
Observed HR	0.65	0.64	0.65			
Avg Follow Up Time	8.226 Months	9.58 Months	10.09 Months			
Power Promising	0.753	0.856	NA			

Design Comparison – All Scenarios

Cytel

Multiple Myeloma Ph 3 Study – Best design

Design Characteristics	Reference	Optimal
Planned Sample Size	800	760
Planned Number of Events	227	182
Average Events	183	158
Average Sample Size	636	582
Average Duration	25 mo	23 mo
Average Power	88%	86%
Timing of Interim Analysis	70%	65%
Efficacy Stopping Rule	LD-OBF	LD-OBF
Futility Stopping Rule	LD-OBF	Gamma (-4)
Promising Zone	NA	(0.3,0.8)

Benefits

Benefits of using assurance in clinical trial design

- 1. **Risk Management:** quantify the probability of a successful trial outcome given uncertainty about effect size and variance.
- 2. **Resource Optimization:** by calculating the likelihood of trial success, assurance enables sponsors to optimize resource allocation, potentially saving time and money.
- **3. Strategic Decision Making:** assurance can guide strategic decision-making by providing a framework to evaluate the impact of different trial designs and scenarios.
- 4. Enhanced Understanding of Trial Metrics: utilizing assurance in the design phase improves the understanding of key trial metrics and their interrelationships, such as power, effect size, sample size.
- **5. Stakeholder Communication:** assurance provides a clear and quantitative measure to communicate the probability of trial success to stakeholders, including investors, regulatory bodies, and ethics committees.

References

- Crisp, A., Miller, S., Thompson, D. and Best, N., 2018. Practical experiences of adopting assurance as a quantitative framework to support decision making in drug development. *Pharmaceutical Statistics*, 17(4), pp.317-328.
- Dallow, N., Best, N. and Montague, T.H., 2018. Better decision making in drug development through adoption of formal prior elicitation. *Pharmaceutical Statistics*, *17*(4), pp.301-316.
- Grieve, A.P., 2023. Probability of success and group sequential designs. *Pharmaceutical Statistics*, 23(4), pp.1-19.
- O'Hagan, A., Stevens, J.W. and Campbell, M.J., 2005. Assurance in clinical trial design. *Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry*, *4*(3), pp.187-201.
- Ren, S. and Oakley, J.E., 2014. Assurance calculations for planning clinical trials with time-to-event outcomes. *Statistics in Medicine*, 33(1), pp.31-45.

Thank you

Pantelis Vlachos

Pantelis.Vlachos@cytel.com

VP Customer Success Cytel Inc. | Geneva, CH

https://calendly.com/pantelis-vlachos/30min

