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Introducing the problem

Assurance and more…

A case study

Q&A
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Introducing the problem



How do I plan the right clinical trial?

How does my asset 
help patients?

How does my molecule 
behave in the human 
body?

What is my benefit-
risk profile?

How safe and tolerable 
is my drug?

What is my treatment 
effect?

What is the right patient 
population to treat?

What comparisons do I 
need to make?

Is my asset better than 
the competition?

What clinical trial design will get 

the answers I need?

How can we accomplish these 

goals quickly and economically?



Trial Design Evolution

Benefit

• Optimal designs modeled against business strategy

• Cross-functional collaboration on design selection

• Accelerate speed to market

Challenges

• Design possibilities often limited from the beginning

• Time and resource constraints restrict number of 

designs and scenarios that can be considered

• Binary study-by-study decision of what tool to use

…today

OutputDesignSimulate

Output

Traditional

Design Simulate



What is assurance?



Hypothesis Test

𝑯𝟎: 𝜹 = 𝟎 𝒗𝒔 𝑯𝑨: 𝜹 ≠ 𝟎

Where the parameter value 𝛿 is the treatment effect
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Power

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎|𝜹 = 𝜹𝑨

Conditional probability of rejecting the null hypothesis) given an assumed parameter value 𝛿 = 𝛿𝐴.

By setting power to some desired probability, we can solve for the sample size that will satisfy the requirement.
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Assurance (Expected Power)

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎

= න

𝜹

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 𝜹 𝒇 𝜹 𝒅𝜹

Unconditional probability of rejecting the null hypothesis given an assumed distribution (prior) for the parameter value 𝛿
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Assurance (more generally)

𝑷 ′𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍 𝒕𝒓𝒊𝒂𝒍′ = න

𝜹

𝑷 ′𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍 𝒕𝒓𝒊𝒂𝒍′ 𝜹 𝒇 𝜹 𝒅𝜹

Unconditional probability of a ‘successful trial’ given an assumed distribution (prior) for the parameter value 𝛿
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Clinical Assurance

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 𝒂𝒏𝒅 𝜹 ≥ 𝚫

= න

𝜹

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 𝒂𝒏𝒅 𝜹 ≥ 𝚫 𝜹 𝑷 𝜹 𝒅𝜹

Unconditional probability of rejecting the null hypothesis and achieving a value 𝚫 or greater of the treatment effect given an 

assumed distribution (prior) for the parameter value 𝛿
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Illustrative Example –
A simulation-based approach



Illustrative Use Case

Study Description

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate the efficacy of 

Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Overall Survival (OS)

Design assumptions:

• Control median OS: 8 months
• Treatment effect: HR = 0.7
• One-sided alpha: 2.5%
• Power: 90%
• Enrollment rate: 20 patients/month 

Sample Size: ~450, Events: ~330



Adding uncertainly in Treatment effect
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HR Vague Prior Clinical Prior

0.65 20% 27%

0.70 20% 37%

0.75 20% 23%

0.80 20% 10%

0.85 20% 3%

Assurance:

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 =

𝑯𝑹

𝑷 𝑹𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 𝑯𝑹 = 𝒙 𝑷(𝑯𝑹 = 𝒙)



An alternative display…
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HR 0.6 0.65 0.7 0.75 0.8 1.0

P(HR) 10% 15% 30% 20% 15% 10%



What if we are also uncertain about control mOS and Accrual
PoS = 0.75
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6 HR values

3 mOS values

3 accrual rates

54 scenarios



Expanding from Fixed to Adaptive Designs
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Clinical Study Description and Fixed Design Requirements

Phase III multicenter, randomized, placebo-controlled, parallel-arm clinical trial to evaluate 
the efficacy of Treatment versus Control in an acute Myeloid Leukemia study

Endpoint: Median OS

• Control median OS: 8 months
• Treatment effect: HR = 0.7
• Enrollment rate: 20 patients/month 
• 1 Interim Analysis for Efficacy at either 40%, 50% or 60% IF
• Alpha-spending according to Gamma rule (-4,-2,1)
• Sample Size: 451, Events: 331
• Power: 90%
• One-sided alpha: 2.5%



Same priors…we now have 1 PoS calculation for each possible design
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Probability of Success of each  design, flat priors
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Fixed GSD

IF 40 50 60

gamma -4 -2 1 -4 -2 1 -4 -2 1

68.3% Probabi
lity of 

Success

68.8% 68.3% 66.3% 68.7% 68.1% 65.9% 68.7% 68.2% 66.0%



Probability of Success of each design, informative prior 
for HR, flat prior for Ctrl mOS and Accrual
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Fixed GSD

IF 40 50 60

gamma -4 -2 1 -4 -2 1 -4 -2 1

73.5
%

Probability 
of Success

73.9% 73.4% 71.1% 73.8% 73.2% 70.7% 73.9% 73.2% 70.8%



Recap

• We started with PoS = σ𝑥 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝐻𝑅 = 𝑥)𝑃(𝐻𝑅 = 𝑥)

• We defined a scenario as {𝐻𝑅 = 𝑥,𝑚𝑂𝑆𝐶 = 𝑦, 𝑟𝑎𝑐𝑐= z} and

• arrived at PoS = σ𝒙𝑷 𝒓𝒆𝒋𝒆𝒄𝒕 𝑯𝟎 𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 = 𝒔)𝑷(𝑺𝒄𝒆𝒏𝒂𝒓𝒊𝒐 = 𝒔)
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Performance Scoring to highlight strategic priorities
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Time

CostPower

Product Development Team 
Chooses Relative Weighting of 

Cost, Time and Power

Models can be scored on performance 

criteria that reflect strategic goals

The score is a weighted function of 

performance criteria
wP (Pmax – Power) / (Pmax - Pmin) 

+ wT (Time - Tmin) / (Tmax - Tmin) 

+ wC (Cost - Cmin) / (Cmax - Cmin)

Selecting general design-agnostic criteria 

enable broad strategic comparisons 

Scoring is meant to surface areas of 

interest in the design map that merit 

further exploration



Performance Score

𝑺𝒄𝒐𝒓𝒆 𝑫𝒆𝒔𝒊𝒈𝒏 𝜽
= 𝒘𝑷𝒇 𝑷𝒐𝒘𝒆𝒓 + 𝒘𝑻𝒇 𝑻𝒊𝒎𝒆 + 𝒘𝑪𝒇(𝒄𝒐𝒔𝒕)

Conditional score for a Design given an assumed scenario 𝜃 is a weighted linear combination of Power, Time, and Cost/Sample 

Size
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Robustness

𝑹𝒐𝒃𝒖𝒔𝒕𝒏𝒆𝒔𝒔 (𝑫𝒆𝒔𝒊𝒈𝒏)

= න

𝜽

𝑺𝒄𝒐𝒓𝒆 𝑫𝒆𝒔𝒊𝒈𝒏 𝜽 𝒈 𝜽 𝒅𝜽

Unconditional score for a Design given an assumed distribution (prior) for the scenario 𝜃
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Robustness score of each design, informative prior for 
HR, flat prior for Ctrl mOS and Accrual

25

Fixed GSD

IF 40 50 60

gamma -4 -2 1 -4 -2 1 -4 -2 1

Robustness 46.1% 50.6% 56.1% 47.5% 50.8% 54.0% 46.8% 48.6% 49.9%

Score = 40%*Power + 30%*Duration + 30%*Sample Size



Robustness score of each design, informative prior for 
HR, flat prior for Ctrl mOS and Accrual
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Fixed GSD

IF 40 50 60

gamma -4 -2 1 -4 -2 1 -4 -2 1

Robustness 46.1% 50.6% 56.1% 47.5% 50.8% 54.0% 46.8% 48.6% 49.9%

Score = 40%*Power + 30%*Duration + 30%*Sample Size



Robustness score of each design, informative prior for 
HR, flat prior for Ctrl mOS and Accrual
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Fixed GSD

IF 40 50 60

gamma -4 -2 1 -4 -2 1 -4 -2 1

Robustness
(unequal weights)

46.1% 50.6% 56.1% 47.5% 50.8% 54.0% 46.8% 48.6% 49.9%

Score = 40%*Power + 30%*Duration + 30%*Sample Size



Better Trial

Faster Trial

Lower Cost Trial

Find the Right Path for Your Study
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Define Success

TRIAL DESIGN SIMPLIFIED AND SCALED 

ACCELERATE TO VALUE

Team input:

Endpoints

Power

Budget

Design

Decision Criteria

Priorities



A case study in
Multiple Myeloma



Multiple Myeloma Ph 3 Study

Reference Design Inputs

Planned Sample Size 800

Planned Number of Events 227

Allocation Ratio 1:1

Targeted Treatment Effect (HR) 0.65

Control Median Survival Time 20 months

Type-1 error (1-sided) 0.025

Target Power 85%

Number of Interim Analyses 1

Timing of Interim Analysis 70%

Efficacy Stopping Rule LD-OBF

Futility Stopping Rule LD-OBF
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Primary Outcome:
Progression Free Survival 

Optimization Aim: 

Maintain adequate power while 
minimizing time to market

Questions of interest:

• What is an optimal design that 
accounts for uncertainty on patient 
recruitment?

• How will treatment effect variations 
impact the trial?

• What study design would most 
optimize cost/sample size?



Cytel Simulation Plan Template 
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Design Options

Type 1 error: 1 sided 0.025

Allocation Ratios: 1:1

Number of subjects: 700:800:20

Number of events (if TTE): 130,162, 182, 210, 227, 263

Statistical Design: GSD, GSD with SSR

Number of interim analyses: 1IA

Timing of interim analyses: 65%, 70%, 75%

Efficacy Stopping Rules/Alpha Spending Function: OBF

Futility Stopping Rules/Beta Spending Function: OBF, none

Promising Zone (if applicable): min = 0.3, max = 0.8, 0.9

Target Conditional Power (if applicable): 90%, 99%

Max Number of Subjects/Events (if applicable): 1.2, 1.3, 1.4

Population Scenarios

True underlying control response rates: 20m PFS (vary?)

True underlying treatment effects: 0.60, 0.65, 0.67

Dropout rate: 0

Enrollment Patterns

Enrollment Rates: (Number of periods, starting at time, average 

enrollment rate)

20pts/mo, 25pts/mo, 30pts/mo

Total number of design options in combination with scenarios (i.e., Models) = 
7993 designs x 9 scenarios = 71937 models

Average Cost per Patient

$100,000



Multiple Myeloma Study 
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Expected 
Enrollment

~72 Million Simulated Trials
9 Scenarios

7
9

9
3
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HR = 0.65HR = 0.60 HR = 0.67



Design Comparison
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Imposing Constraints
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Design Comparison – Reference Scenario
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Design Comparison – All Scenarios
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Multiple Myeloma Ph 3 Study – Best design

Design Characteristics Reference Optimal

Planned Sample Size 800 760

Planned Number of Events 227 182

Average Events 183 158

Average Sample Size 636 582

Average Duration 25 mo 23 mo

Average Power 88% 86%

Timing of Interim Analysis 70% 65%

Efficacy Stopping Rule LD-OBF LD-OBF

Futility Stopping Rule LD-OBF Gamma (-4)

Promising Zone NA (0.3,0.8)
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Benefits



Benefits of using assurance in 
clinical trial design

1. Risk Management: quantify the probability of a successful trial 

outcome given uncertainty about effect size and variance.

2. Resource Optimization: by calculating the likelihood of trial 

success, assurance enables sponsors to optimize resource 

allocation, potentially saving time and money.

3. Strategic Decision Making: assurance can guide strategic 

decision-making by providing a framework to evaluate the 

impact of different trial designs and scenarios.

4. Enhanced Understanding of Trial Metrics: utilizing assurance 

in the design phase improves the understanding of key trial 

metrics and their interrelationships, such as power, effect size, 

sample size.

5. Stakeholder Communication: assurance provides a clear and 

quantitative measure to communicate the probability of trial 

success to stakeholders, including investors, regulatory bodies, 

and ethics committees.
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