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A Common Limitation of the Medical Literature

Typical medical papers on randomized clinical trials include
estimated effects of treatments and covariates on outcomes.

This falls short of what practicing physicians need to make
informed treatment decisions.
A Phase III Breast Cancer Trial: 340 patients with hormone
receptor positive advanced breast cancer were randomized to
Letrozole + Bevacizumab (L+B) or
Letrozole + Placebo (L) (Dickler, et al. JCO, 2016).

Primary Endpoint: Progression-free survival (PFS) time

Median PFS was 20.2 mos (95% CI 17.0 – 24.1) with L+B
versus 15.6 mos (95% CI 12.9 – 19.7) with L.

Secondary Endpoints: 21 different types of toxicity

46.8% of L+B pats had ≥ 1 severe toxicity
versus 14.2% with L
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The one-sided p-value for a test comparing PFS between L+B and L  was 

0.016.  

Since 0.016 was smaller than the sacred value 0.05, 

Dickler et al. (2016)  concluded that 

L+B provided a “statistically significant” improvement over L in PFS 

 
Modern

Medical Science 
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A Decision Problem for Practicing Oncologists

I In terms of PFS time, L + B was slightly better than L
(Median PFS 20.2 months versus 15.6 months).

I In terms of Severe Toxicity, L was much better than L + B
(14.2% versus 46.8%).

Key Baseline Covariates

X1 = Age
X2 = I[measurable disease at enrollment]
X3 = I[disease free interval prior to trial entry ≥ 24 months]

Question 1: How can a physician and patient account for PFS
time and 21 types of toxicity when choosing a treatment?

Question 2: How can a patient’s baseline covariates be used to
make a personalized treatment choice?
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Preliminaries on Utility Functions
Examples of Co-Primary Outcome Vectors

1. (PFS Time, Z1, · · · ,Z21) in the breast cancer trial
2. (Response, Toxicity) for a phase I-II dose-finding trial
3. (Post Operative Morbidity, Days in Hospital) following
surgery in a nutritional prehabilitation trial
4. The times to (Toxicity, Cytokine Storm, Response, Disease
Progression, Death) in a cell therapy trial

Establishing A Utility Function

For all possible values y of Y , elicit U(y) = The desirability of y

For τ = treatment and probability distribution fY (y |τ, θ) with
parameters θ, the Mean Utility of τ is

U(τ, θ) = EY {U(Y ) | τ, θ} =

∫
y

U(y)fY (y |τ, θ)dy .
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Estimating Utilities

Bayesian Estimator of the Mean Utility of Treatment τ

Under a Bayesian model, given observed data D, the
Posterior Predictive Mean Utility of τ for a future patient is

u(τ,D) = Eθ
{
U(τ, θ) | D

}
=

∫
θ
U(τ, θ)p(θ | D)dθ.

Frequentist Estimator of the Mean Utility of Treatment τ

Compute a consistent estimator θ̂
freq

= θ̂(D) and plug it into the
mean utility function:

ûfreq(τ,D) = U(τ, θ̂
freq

)
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Toy Example of a Utility in the 2 × 2 Case

For binary outcomes YR = I[Response], YT = I[Toxicity], the four
possible values of Y = (YR ,YT ) are (1,0), (1,1), (0,0), or (0,1).

Establishing U

I Set U(1, 0) = 100 for the best possible outcome and U(0, 1) =
0 for the worst possible outcome.

I Elicit the intermediate values U(0, 0) and U(1, 1).

U(1, 1) = 70 and U(0, 0) = 40 =⇒

No Toxicity Toxicity
No Response 40 0
Response 100 70
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Computing Mean Utilities in the Toy Example

For πa,b(τ, θ) = Pr(YR = a,YT = b | τ, θ), a, b ∈ {0, 1}, the
Mean Utility of Treatment τ is

U(τ, θ) =
1∑

a=0

1∑
b=0

U(a, b)πa,b(τ, θ)

π(τ1) = (π0,0(τ1), π0,1(τ1), π1,0(τ1), π1,1(τ1)) = (.40, .10, .30, .20)
=⇒ U(τ1, θ) = 60

π(τ2) = (.60, .10, .10, .20) =⇒ U(τ2, θ) = 48.

I U(y) is subjective, which is highly desirable

I When analyzing data, one may consider different utilities and
assess sensitivity of posterior inferences to U1(y) versus U2(y)
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Incorporating Patient Covariates

The Pavlos Msaouel Elaboration: Elicit “precision” utilities that
vary with both Y and covariates X = (X1, · · · ,Xp) to define a

Precision Utility Function Family (PUFF) {U(Y ,X ) : X ∈ X}

The mean utility of treatment τ for a patient with covariates X is

U(τ,X , θ) =

∫
y

U(y ,X )fY (y |τ,X , θ)dy .

Averaging over the posterior of θ gives a statistical criterion for
“precision medicine”: Choose a treatment τ for given X based on

u(τ,X ,D) =

∫
θ
U(τ,X , θ)p(θ | D)dθ.
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Practical Advantages of a Utility Function

1. Quantify Trade-Offs: U(yR , yT ) = Desirability of a possible
combination of yR = response and yT = toxicity.

2. Reduce Dimension to Facilitate Making Decisions:
Multi-dimensional Y −→ 1-dimensional U(Y ), which is used to
compute 1-dimensional statistics u(τ1,D), · · · , u(τJ ,D) for
evaluating and comparing treatments τ1, · · · , τJ .

If u(τ1,D) > u(τ2,D) then τ1 is more desirable than τ2

3. A PUFF Accounts for Heterogeneity: u(τ,X ,D) is a criterion
for choosing a best treatment for a patient with covariates X .
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Total Toxicity Burden
To summarize 21 different types of toxicity Z = (Z1, · · · ,Z21),
where each Zj = severity grade 0 (None), 1, 2, 3, 4, or 5 (Fatal),
the Total Toxicity Burden is

TTB = 1
21×5

∑21
k=1 Zk
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Notation for Outcomes and Treatments

For each patient i = 1, · · · , n = 340 in the breast cancer trial, the
outcome data consisted of

Ti = PFS time, T o
i = Ti or administrative censoring time

εi = I[T o
i = Ti ].

T̃i = log(Ti ) was used in the analysis

Toxicity grades Z i = (Zi ,1, · · · ,Zi ,21) were summarized by

Qi = TTB(Z i ) =⇒ Y i = (T̃i ,Qi ) = (log PFSi , TTBi )

τi = 1 if patient i treated with L + B , τi = 0 if treated with L
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Bayesian Nonparametric Models: A Brief Review
Ferguson (1973) proposed putting a prior on a probability
distribution G , rather than the usual approach of assuming a
parametric model for G and putting a prior on its parameters.

He defined a Dirichlet process (DP) prior on G , characterized by a
base probability measure G0 = E (G ) and total mass parameter
α > 0 so that, for any measurable partition {B1, · · · ,Bk} of the
domain of G ,

G (B1), · · · ,G (Bk) ∼ Dirichelt(αG0(B1), · · · , αG0(Bk))

This prior is denoted G ∼ DP(G0, α).

Conjugacy: Given a sample Y1, · · · ,Yn
iid∼ G , denoting the point

mass on Y by δY , if G ∼ DP(G0, α) then the posterior is

G | Y1, · · · ,Yn ∼ DP
(

α

α + n
G0 +

n∑
j=1

1
α + n

δYj , α + n
)
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Stick-Breaking Construction of a DP

Sethuraman (1994) constructed a DP by using probabilities

v1, v2, . . .
iid∼ beta(1, α) to define weights wk = vk

∏
r<k(1− vr )

=⇒ w1 = v1, w2 = v2(1− v1), w3 = v3(1− v2)(1− v1), and so on.

Given {w1,w2, · · · } and Y1,Y2, · · ·
iid∼ G0, Sethuraman proved that

a DP is a weighted average of point masses {δY1 , δY2 , ...}

G =
∞∑

k=1

wkδYk ∼ DP(G0, α).

This constructive definition greatly facilitates computing.

The “stick” is a metaphor for a probability stick of length 1, with
pieces of diminishing sizes w1,w2, · · · successively broken off.
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Dirichlet Process Mixtures

Problem: A DP prior G ∼ DP(G0, α) has discrete support.

Solution: To obtain continuous support, a DP mixture (Lo, 1984)
is defined by using a continuous density function f (y | θ) as a
smoothing kernel :

Y | G , f ∼
∫

f (y | θ)G (dθ).

A popular kernel choice is a Gaussian pdf f (y | θ) = φ(y | µ, σ2) :

Y | G , φ ∼
∫
φ(y | µ, σ2)G (dµ)

possibly with additional priors on µ and σ2
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Examples of DP Mixture Density Estimation

Time Between Volcanic Eruptions Anxiety and Depression
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Dependent Dirichlet Processes

To incorporate covariates X = (X1, · · · ,Xp) into a DP
McEachern (1999) defined a Dependent Dirichlet process (DDP)
as a fully nonparametric regression model

Yi | X i
ind∼ GX i , i = 1, · · · , n,

where GX is a DP that can vary in any way with X .

A DDP is constructed by indexing everything with X in the

stick-breaking algorithm: vm(X )
ind∼ beta(1, αX ) and

wm(X ) = vm(X )
∏

r<m(1− vr (X )) =⇒

GX =
∞∑

m=1

wm(X )δηm(X )

A linear DDP has simple parametric linear combinations
ηm(X ) =

∑p
j=1 θm,jXj with a prior on θm for each m
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Application to the Breast Cancer Data
Patient Frailties: Account for heterogeneity between patients not
explained by covariates {X i} by defining 22-dimensional real-valued
frailties s i = (si ,0, si ,1, . . . , si ,21) for patients i = 1, · · · , n :

s i | Ω
iid∼ N22(0,Ω) and Ω ∼ Inv-Wishart(as ,Ω

0).

Multivariate Probit Model For Ordinal Toxicity Grades

Define 21−variate latent normal frailty Z̃ i = (Z̃i ,1, · · · , Z̃i ,21). For
the kth toxicity, specify cut-offs uk,0 < uk,1 < · · · < uk,J and define

Zi ,k = j if and only if uk,j < Z̃i ,k ≤ uk,j+1.

The joint distribution of Z̃ i induces a joint distribution on Z i

Denote the 1+21=22 variate pdf of T̃i = log(Ti ) and Z̃ i by

h(T̃i , Z̃ i | τi ,X i , s i )
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To analyze the breast cancer data, a linear DDP with covariates
(τ,X ) was defined, with linear terms

η0(τi ,X i ) = β0τi +
3∑

r=1

βrXi ,r for T̃ = log(T ) = log(PFS)

ηk(τi ,X i ) = αk,0τi +
3∑

r=1

αk,rXi ,r , for toxicities Z1, · · · ,Z21

Denote η = (η0, η1, · · · , η21) and 22-variate normal pdf φ22.

The linear DDP mixture model for the joint pdf h is

h(T̃i , Z̃ i | τi ,X i , s i ) =

∫
φ22(T̃i , Z̃ i | η(τi ,X i ) + s i ,Σ)Gτ,X (dη).

The DDP prior on the vector η = (η0, η1, · · · , η21) is

Gτ,X =
∞∑

m=1

wmδηm(τ,X )
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Under the DDP, the joint 22-variate pdf of T̃ and latent toxicity
grade generators Z̃ i = (Z̃i ,1, · · · , Z̃i ,21) is a weighted average of
22-variate normal linear regression model pdfs:

h(T̃i , Z̃ i | τi ,X i , s i ) =
∞∑

m=1

wm φ22(T̃i , Z̃ i | ηm(τi ,X i ) + s i ,Σ),

For the covariate and treatment parameters, assume priors

βm
iid∼ Np+2(β̄, τ2Ip+2), αm,k

iid∼ Np+2(ᾱk ,V ), k = 1, . . . , 21,

where β̄, ᾱk , τ2 and V are fixed hyperparameters.

h has parameters θ = (β,α1, · · · ,αK ), and patient frailties {s i}
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Joint Posterior of θ and patient frailties s1, · · · , sn

Recall that εi = I[T o
i = Ti ] and T̃i = log(Ti ).

The Joint Likelihood for the i th patient’s observed outcomes is

L(T̃ o
i , εi ,Z i | τi ,X i , s i ,θ)

=

{
fT (T̃ o

i | τi ,X i , si ,0,θ)

}εi{
1− FT (T̃ o

i | τi ,X i , si ,0,θ)

}1−εi

×
21∏

k=1

p(Zik | τi ,X i , si ,k ,θ)

=⇒ The Joint Posterior of θ and s = (s1, · · · , sn) is

p(θ, s | Dn) ∝ p(θ)
n∏

i=1

L(T̃ o
i , εi ,Z i | τi ,X i , s i ,θ)× p(s i | θ)
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How the DDP Regression Model Works

1. The 21-variate normal distribution of latent Z̃ i induces a
21-variate probit distribution on observed toxicity grades Z i .

2. The multivariate normal priors for αm,1, · · · ,αm,21 borrow
information across the toxicities.

3. The model incorporates treatment τ and covariates X linearly in
the mean of each normal summand in the linear DDP.

4. The joint DDP density h(T̃ , Z̃ | τ,X ,θ) is a weighted average of
22-variate normals =⇒ The model accommodates complex
interactions among τ and the entries of X , and multiple modes. It
is far more robust than a Cox model or accelerated failure time
model for T̃ .
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Constructing a Utility Function

A Precision Utility Function Family (PUFF) indexed by X is :

UTotal(T ,Q,X ) = UPFS(T )× UTTB(Q,X )

where UPFS(T ) increases with T and 0 < UTTB(Q,X ) < 1

UTTB(Q,X ) is a multiplicative penalty for Q = TTB

0 < UPFS(T ) < 100

No TTB penalty if Q = 0 (No toxicity): UTTB(0,Age) = 1 and
UTotal (T ,Q,Age) = UPFS(T ) regardless of Age
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Rationale for the Utility

1. Only X1 = Age is included in UTTB , because

I Younger advanced breast cancer patients care more about
extending PFS than controlling TTB

I Older patients have shorter expected survival time, so they care
more about maintaining a good quality of life: A sightly shorter
PFS time is an acceptable tradeoff for a much lower TTB =⇒

UTotal(T ,Q,X ) = UTotal(T ,Q,Age).

2. For any PFS time, larger Q = TTB decreases the utility more
for an older patient than for a younger patient.

3. The utility UPFS(T ) does not vary with age.

4. When there is no toxicity (TTB=0),
UTotal (T , 0,Age) = UPFS(T ) since UTTB(0,Age) = 1.
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Elicited Numerical Utilities U(PFS ,TTB,Age)

Age = 40 years Age = 50 years

TTB (q) PFS (t) PFS (t)
0 12 24 48 ∞ 0 12 24 48 ∞

0.000 0 25 50 95 100 0 25 50 95 100
0.025 0 25 50 95 100 0 23 49 95 100
0.050 0 23 49 95 100 0 20 48 93 100
0.100 0 20 48 93 100 0 17 44 90 100
0.150 0 17 44 90 100 0 5 32 80 100
0.500 0 5 32 80 100 0 0 0 0 0
1.000 0 0 0 0 0 0 0 0 0 0

Age = 65 years Age = 85 years

TTB (q) PFS (t) PFS (t)
0 12 24 48 ∞ 0 12 24 48 ∞

0.000 0 25 50 95 100 0 25 50 95 100
0.025 0 20 48 93 100 0 17 44 90 100
0.050 0 17 44 90 100 0 5 32 80 100
0.100 0 5 32 80 100 0 0 0 0 0
0.150 0 0 0 0 0 0 0 0 0 0
0.500 0 0 0 0 0 0 0 0 0 0
1.000 0 0 0 0 0 0 0 0 0 0
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Example: A 60-year-old patient versus a 40-year-old patient

Suppose TTB = Q = 0.50 and UPFS(36) = 80.

For a 60-year-old patient: UTTB(0.50,Age = 60) = 0.50 =⇒

UTotal (PFS , .50,Age) = UTotal (36, .50, 60) = UPFS(36)×UTTB(.50, 60)

= 80× .50 = 40

For a 40-year old patient: UTTB(0.50,Age = 40) = 0.70 =⇒

UTotal (PFS , .50,Age) = UTotal (36, 0.50, 40)

= 80× .70 = 56

.
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Specifying a Functional Form for UPFS

Msaouel and Lim specified UPFS(24) = 50, UPFS(48) = 95, and
lim

t→∞
UPFS(t) = 100, and constructed the function

UPFS(t) =


95
( t

48

)a if t < 48

100
1+exp(−b1t) if t ≥ 48.

Fitting this to the 2 elicited values gave a = 0.926 and b1 = 0.061.
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Specifying a Functional Form for UTTB

The multiplicative penalty term UTTB(Q,Age) was defined to
decrease faster for older Age.

Msaouel and Lim established numerical values of 0 < UTTB < 1 for
(Q,Age) pairs on a grid, and approximated them by the function

UTTB(Q,Age) = exp{−Q2/(2g2(Age))}, for 0 ≤ q ≤ 1,

where
g(Age) = exp(.823− .05Age)

from the elicited numerical utilities
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Elements of the PUFF for Age = 50, 65, and 85
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Using the Utility for Personalized Treatment Selection

Recall T̃ = log(T ). A new patient with prognostic covariates X new

treated with τ has predictive outcome distribution

p(T̃ ,Z | τ,X new ,D).

The Predictive Mean Total Utility of treatment τ for a new patient
with covariates X new is

uTotal(τ,X new ,D) =

5∑
z1=0

. . .

5∑
z21=0

∫
R

UTotal(t,Q(z),Agenew )p(t̃, z | τ,X new ,D)d t̃.

Decision for the new patient: Choose the treatment τ = L + B
or L having larger uTotal (τ,X new ,D).
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Posterior predictive mean utilities for different values of X new =
(Age, I[Active Disease], I[> 24 months w/o prior disease]) for
L = Letrozole and L + B = Letrozole + Bevacizumab
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A Predictive Criterion for Choosing a Treatment Based on X

Posterior predictive probability that L + B has larger total utility
than L for a new patient with prognostic covariates X new :

∆(X new ) = ∆(Agenew ) =

Pr
{

UTotal(T ,Q,Agenew , L + B) > UTotal(T ,Q,Agenew , L)

∣∣∣∣ D}

Interpretation

∆(X new ) > .50 =⇒ L + B is more desirable than L.

∆(X new ) = .50 =⇒ L + B and L are equally desirable.

∆(X new ) < .50 =⇒ L is more desirable than L + B.
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A Solution to the Decision Problem
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L + B is preferable if Age < 70 and L is preferable if Age ≥ 70

A computer program utility-analysis is available from
https://users.soe.ucsc.edu/juheelee/
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