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Introduction
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Background and Motivation

Motivation

Background

• Oral corticosteroids (OCS) are widely prescribed for inflammatory and autoimmune 

conditions

• Prolonged OCS use is associated with serious side effects (e.g., cardiovascular events, 

osteoporosis, infections).

• The real-life impact of cumulative OCS use, which may differ from controlled clinical trial 

settings.

• OCS use is tracked in large real-world cohorts using electronic health records (EHRs) and 

claims data.

• In real-world populations, the risk of adverse events from OCS use varies over time, 

making it essential to capture dynamic changes in hazard rates, which are influenced by 

real-world treatment patterns, adherence, and co-existing conditions.

• Using real-world data allows us to track cumulative OCS exposure and better reflect the 

diversity of patient experiences, such as comorbidities and varying doses, that influence 

risk.
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OCS concertation and hazard function over time

Abbreviations: VSC, Value and Scientific Communications

Threshold effect:

• The risk increases once the concertation passes  

threshold

• Effect diminishes until the next OCS

The hazard function depends on whether the 

cumulative dose passes the threshold right after 

administration. 
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Why Bayesian?

• Understanding the impact of cumulative OCS exposure on adverse events is 
critical for patient safety. 

• Traditional cox models often assume constant effect, and most parametric 
distributions does not flexible enough. Because OCS dosage and effect 
change over time, making it challenging to estimate accurately. 

• Bayes Model

– Bayesian models provide a flexible framework to 

incorporate prior knowledge, handle complex 

relationships, and accommodate time-varying 

effects.

– Allows estimation of uncertainty around model 

parameters, offering robust inference in the 

presence of varying cumulative exposure.



Piecewise constant baseline 
hazard model
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Notation of Piecewise Constant Baseline Hazard model

Divide the time axis into 𝐾 intervals: 0, 𝜏1 , 𝜏1, 𝜏2 , … , 𝜏𝐾 , ∞ . 

• The baseline hazard function for time 𝑡 ∈ [𝜏𝑘−1, 𝜏𝑘] is 

ℎ0 𝑡 = 𝜆𝑘

• The cumulative hazard function 𝐻0(𝑡) up to time 𝑡 is the sum of the hazard 
across the intervals

𝐻0 𝑡 = ෍

𝑘=1

𝑗−1

𝜆𝑘(𝜏𝑘 − 𝜏𝑘−1) + 𝜆𝑗(𝑡 − 𝜏𝑗−1)

• The survival function 𝑆(𝑡), which gives the probability of surviving beyond 
time 𝑡, is related to the cumulative hazard by:

𝑆 𝑡 = exp(−𝐻0 𝑡 )
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Likelihood of the Piecewise Constant Hazard Model

The Likelihood for the piecewise constant hazard model is

𝐿𝑖 = ෑ

𝑘=1

𝑗−1

exp(−𝜆𝑘(𝜏𝑘 − 𝜏𝑘−1)) exp −𝜆𝑗(𝑡𝑖 − 𝜏𝑗−1) 𝜆𝑗
𝛿𝑖

  

where brown term represents that survival probability up to 𝜏𝑗−1, the blue term is the probability of 

surviving until time 𝑡𝑖 within the its interval, and the black term accounts for the probability of an event 

occurring at 𝑡𝑖 if it is not censored. 
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A More Flexible Hazard Function is Needed

• The Piecewise constant hazard model is the most 
effective in estimating the true hazard rate due to its 
ability to model changes at specific intervals, 
(Exponential, Weibull, Gompertz) fail to capture the 
periodic nature of the hazard.

• But in the real world, the situation would be more 
complicated.

• OCS dosing schedules fluctuate.

• The effect of OCS on the hazard rate may  not be 
constant over time.

• The effect of OCS also depends on the covariates.

• The result is very sensitive to the setting of the time 
intervals. 

• A more flexible/smoother estimation is necessary.



Bayesian spline hazard model 
with time-varying effect
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Introduction to Spline in Survival Analysis

• Splines are flexible functions used to model relationship between variables

• They are piecewise polynomial functions joined together smoothly at specific points called knots.

• Splines are useful when relationship between variables is non-linear, but the exact form of the 

curve is unknown. It allows to model more complex, time-varying hazard functions, capturing 

changes that other parametric models (Exponential, Weibull, or Gompertz) might miss.

The hazard function with a M-spline basis for 

the baseline hazard can be written as:

log ℎ0 𝑡 = ෍

𝑗=1

𝐽

𝛾𝑗𝑀𝑗(𝑡; 𝛿, 𝑘)
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Introduction to Spline in Survival Analysis

• Splines provide a smooth and continuous 

estimation of the hazard function, avoiding the 

jumps that occur at the "knots" (boundaries) of a 

piecewise constant model.

• Splines reduce the risk of model misspecification 

due to arbitrary knot placement, offering a more 

data-driven approach to modeling hazard rates.

• Splines are better suited for dynamic and non-

linear risk patterns, making them useful when the 

effect of OCS on the hazard rate fluctuates in 

complex ways over time.
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Incorporating Covariates into the Spline-Based Hazard Model

Covariates like age, OCS dose, or comorbidities may affect the hazard rate differently at different 

times, and using Splines allows us to model these effects flexibly.

The hazard function ℎ 𝑡  can be modeled flexibly using splines and linear components for covariates.

ℎ𝑖 𝑡 = ℎ0 𝑡 × exp(𝛽1 𝑡 𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ )

• ℎ0 𝑡  is the baseline hazard function, which can be modeled with parametric distributions (e.g., 

exp, Weibull, Gompertz), or piecewise constant hazard function, or M-Spline.  

• 𝛽1 𝑡 𝑥𝑖1 is the time-varying effect of the covariates, where 𝛽(𝑡) can change over time. The 

time varying effect can be modeled using splines as well.

 𝛽1 𝑡 = 𝛾0 + σ𝑗=1
𝐽 𝛾𝑗𝑀𝑗(𝑡)

• 𝛽2 is the fixed effect
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Simulation

Simulate survival data for 1000 individuals.

• Covariates:

– Treatment group: a binary indicator where 50% of individuals are randomly assigned to treatment 

and the rest to the control group.

– Age: simulated from a normal distribution with a mean of 60 and a standard deviation of 10. 

– Gender: a binary variable representing gender, with 50% of sample being male

The data generating hazard function ℎ 𝑡  given the covariates is:

ℎ𝑖 𝑡 = ℎ0 𝑡 × exp(𝛽𝑡𝑟𝑡 𝑡 𝑡𝑟𝑡𝑖 + 𝛽𝑎𝑔𝑒𝑎𝑔𝑒𝑖 + 𝛽𝑓𝑒𝑚𝑎𝑙𝑒𝑓𝑒𝑚𝑎𝑙𝑒𝑖)

• ℎ0 𝑡 = 0.01

• 𝛽𝑡𝑟𝑡 𝑡 = 1 if 𝑡 ∈ [5,10] or 𝑡 ∈ [15, ∞), and 𝛽1 𝑡 = 0.2, otherwise. 

• 𝛽𝑎𝑔𝑒 = 0.03, 𝛽𝑓𝑒𝑚𝑎𝑙𝑒 = 0.15

• The maximum follow-up is 30.
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Results

Elpd diff Se diff

SHtve 0 0

COXPH -33.8 8.2

• The expected log pointwise predictive density (elpd) measures 
the predictive accuracy of a model, with higher values indicating 
better fit.

• TVE model is better than Coxph model by 33.8 elpd units.

• -33.8 is more than 2 * 8.2 = 16.4, which indicates that the difference in 
predictive accuracy is significant different.
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Results

Coefficient Bias Coverage 90%

Age -0.00002 0.89

Gender 0.009 0.92

Trt0 -0.006 0.95

Trt1 0.005 0.93

Trt2 0.038 1

Trt3 0.019 1

• The biases are all relatively small, indicating that the model is performing well in terms of 
consistently estimating parameters.

• The coverage for most estimates is close to or above 0.9, indicating that the 90% credible 
intervals contain the true parameter values a high proportion of the time.
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Prediction

• We are interested in the survival 

probability for patients with different 

duration of exposure to OCS.

• This figure illustrated the predicted 

conditional survival probabilities over time 

for three different patients.

• Id1 is not exposure to OCS

• Id2 received OCS for 1 unit of time

• Id3 received OCS for 10 units of time

• Based on the predictions generated from 

our survival model, we can accurately 

estimate each patient’s conditional 

survival probability over time, accounting 

for their respective exposure durations.
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Summary

• In this study, we developed a flexible Bayesian time-varying survival model to evaluate the impact of 

OCS on patient outcomes. Utilizing real-world data and Bayesian techniques, this framework captures 

the dynamic nature of OCS effects over time and allows for a better understanding of how cumulative 

OCS exposure impacts patient survival probability.

• The Bayesian model accommodates time-varying effects, reflecting the real-world changes in 

hazard rates associated with OCS exposure.The approach allows for better understanding of how 

the risk of adverse outcomes varies with the timing of OCS administration.

• By implementing M-splines, we capture complex, non-linear relationships and provide a more 

robust and flexible estimation of the hazard function, compared to traditional parametric models.

• LOOCV and WAIC(Watanabe-Akaike Information Criterion) can be used to guide model selection, 

e.g. knots and degree of splines.

• The proposed models can be implemented in rstanarm.



THANKS
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Questions?
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