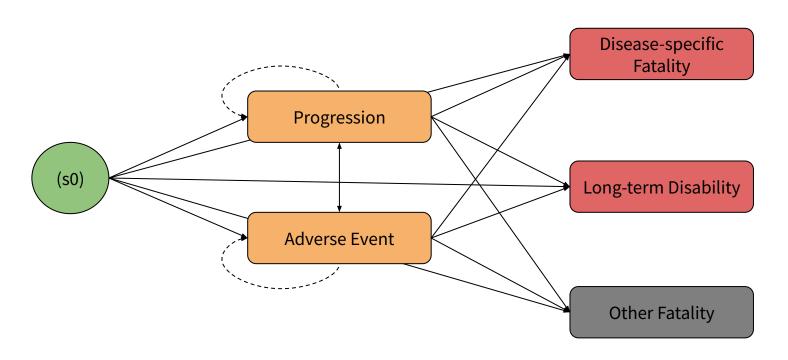
Multi-timescale Multi-state Models

Jacqueline Buros jacki@generable.com 25 Oct 2024

Anatomy of a Multi-state Model

Disease-specific **Fatality** Progression (s0) Long-term Disability **Adverse Event** Other Fatality

Anatomy of a Multi-state Model



Why Multistate?

- Model event risk jointly
- Evaluate influence of previous events on future event risk
- Adjust for informative censoring
- Simulate likely clinical outcomes

Likelihood

The model implemented here is inspired by that described in Kneib and Hennerfeind (2008).

For each possible transition h among all transitions 1...H among the states, we estimate the probability of that transition $\lambda_i^{(h)}(t)$ for each subject i at time t. Each transition probability is estimated using a hazard rate model analogous to a continuous-time hazard rate model used in a Cox survival analysis:

$$\lambda_i^{(h)}(t) = g^{(h)}(t) \exp(\eta_i^{(h)}(t))$$

where $g^{(h)}(t)$ represents the baseline hazard for transition h and the relative log-hazard ($\eta_i^{(h)}(t)$ for subject i is defined as follows:

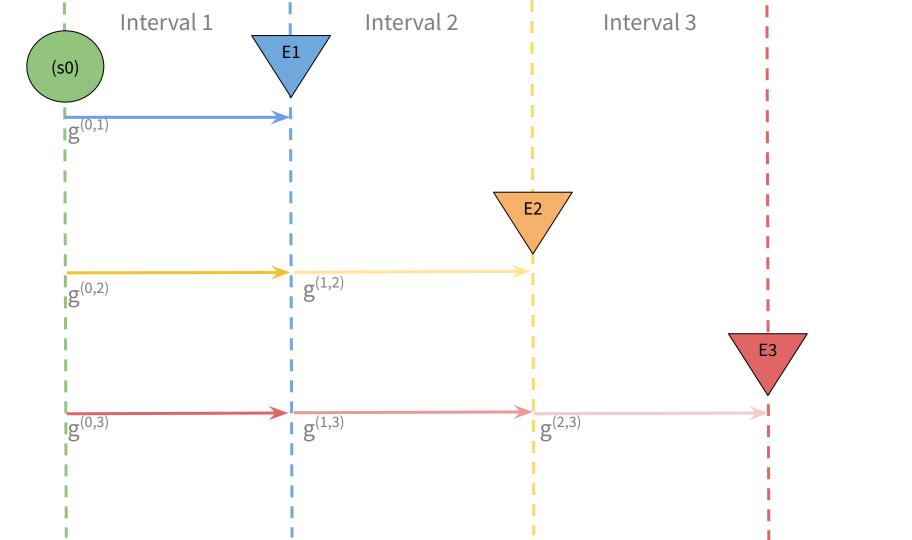
$$\eta_i^{(h)}(t) = \underbrace{x_i^{(h)}eta^{(h)}}_{ ext{covariates}} + \underbrace{\sum_{c=1}^{C^{(h)}} k^{(h)}(w_{ci}^{(h)}, \gamma^{(h)})}_{ ext{nonlinear effects}} + \underbrace{\sum_{l=1}^{L}
u_{li}(t) \xi_l^{(h)}}_{ ext{exposure}} + \underbrace{\sum_{s=1}^{S} \mu_{si}(t) \phi_s^{(h)}}_{ ext{event history}} + \underbrace{\alpha_i^{(h)}}_{ ext{frailty}}$$

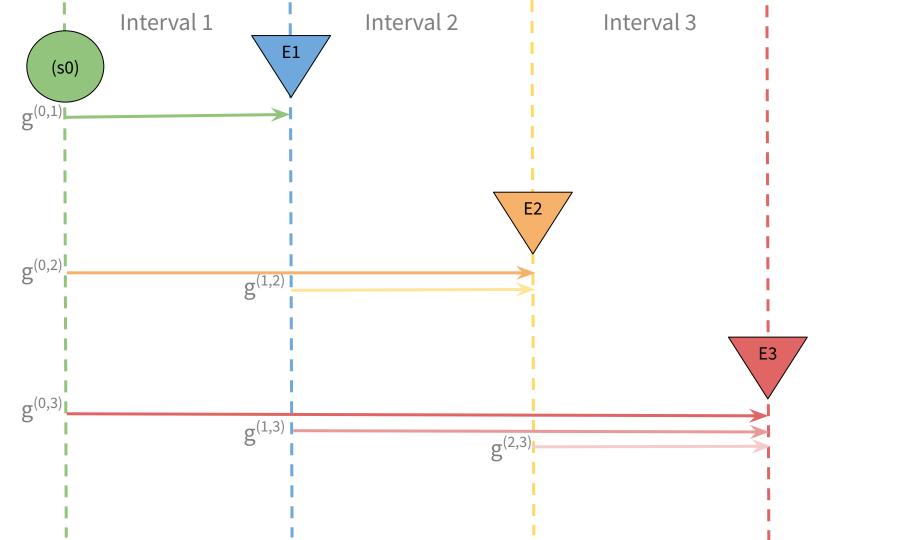
We need one more data point to define the subject-specific contribution to the likelihood: an at-risk indicator $\mathbf{I}_i^{(h)}(t)$ for each transition which takes values in 0,1 to indicate whether a subject is at-risk for a transition h at time t. To connect this to the graph above, a subject in a state s is at risk for all transitions originating from s.

Given this and the estimated subject- and transition-specific hazard $\lambda_i^{(h)}(t)$, we define the likelihood contribution for each transition as a sum over possible transitions h in H and observed event times T_{ri} and event flags $\delta_{ri}^{(h)}$ for each event r in m_i , where m_i represents the total number of events subject i experienced:

$$l_i = \sum_{r=1}^{m_i} \sum_{h=1}^{H} \left[\underbrace{\delta_{r,i}^{(h)} \log(\lambda_i^{(h)}(T_{r,i}))}_{ ext{likelihood of event}} \underbrace{- ext{I}_i^{(h)}(T_{r,i}) \int_{T_{(r-1),i}}^{T_{r,i}} \lambda_i^{(h)}(t) dt}_{ ext{likelihood of survival}}
ight]$$

```
for(h in 1:N_trans){
 // Ragged array access
 array[sum_risk[h]] int idx_atr = which_risk[h, 1:sum_risk[h]];
 array[sum_trans[h]] int idx_occ = which_trans[h, 1:sum_trans[h]];
 // Occurred transitions (log hazard at interval end time)
 target += log_hazard(
   log_C_haz[idx_occ, h], SBF[idx_occ,:], weights[h], log_w0[h]
 );
 // Transitions that were at risk (- integrated hazard over interval)
 target += - integrate_hazard(
    log_C_haz[idx_atr, h], SBFI[idx_atr,:], weights[h], log_w0[h]
```





Example data

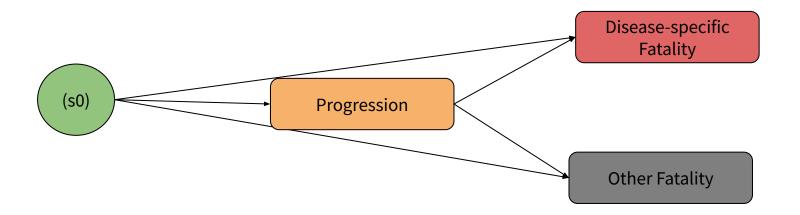
- Data for 509 subjects from The Cancer Genome Atlas (TCGA)
- These data are for patients with Renal Clear Cell Carcinoma (acronym: KIRC)

CASES AND FILE COUNTS BY DATA CATEGORY

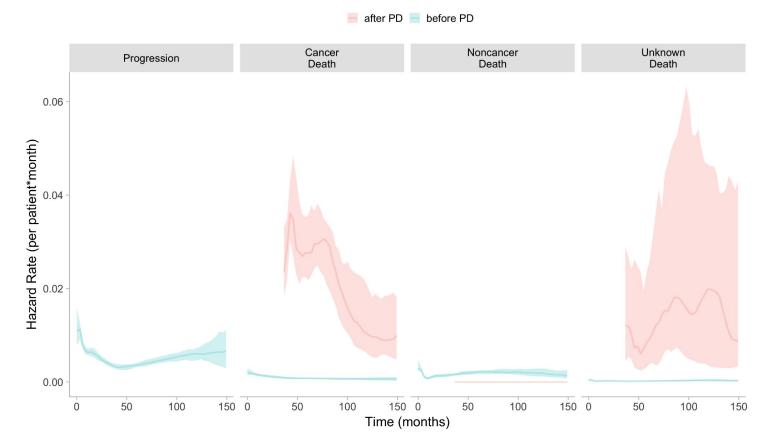
Data Category	Cases (n=537)	Files (n=29,352)
Biospecimen	537 100.00%	3,257 11.10%
Clinical	537 100.00%	1,165 3.97%
Copy Number Variation	534 99.44%	6,120 20.85%
DNA Methylation	535 99.63%	2,709 9.23%
Proteome Profiling	478 89.01%	478 1.63%
Sequencing Reads	535 99.63%	3,603 12.28%
Simple Nucleotide Variation	534 99.44%	7,082 24.13%
Somatic Structural Variation	11 2.05%	22 0.07%
Structural Variation	533 99.26%	2,456 8.37%
Transcriptome Profiling	534 99.44%	2,460 8.38%

Covariates & Events

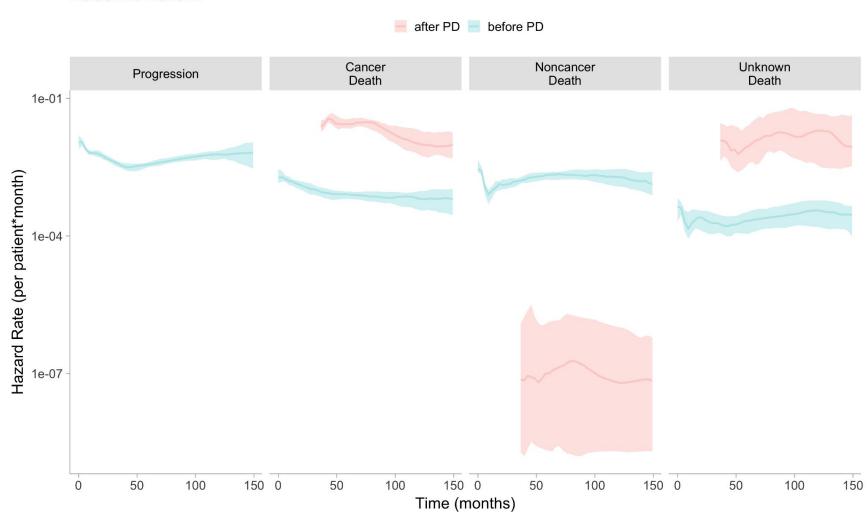
- Tumor Stage at Diagnosis (I, II, III, IV)
- Age at Diagnosis



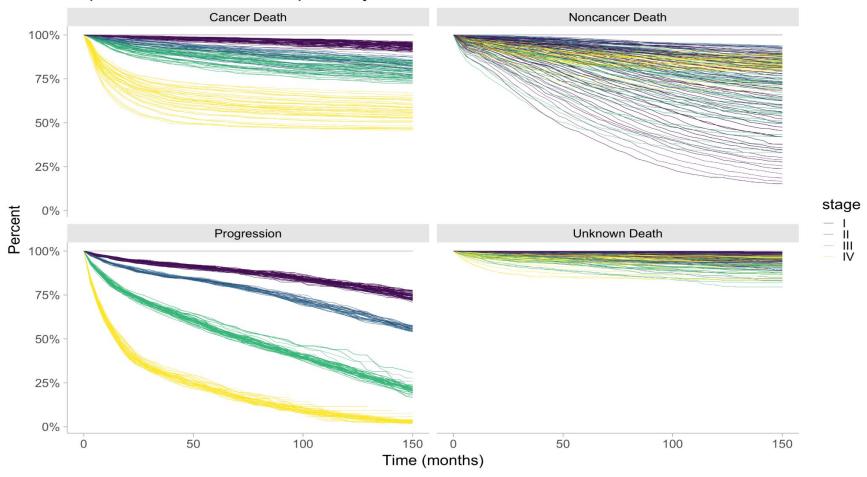
Event Rate after PD event at 35 months



Baseline hazard



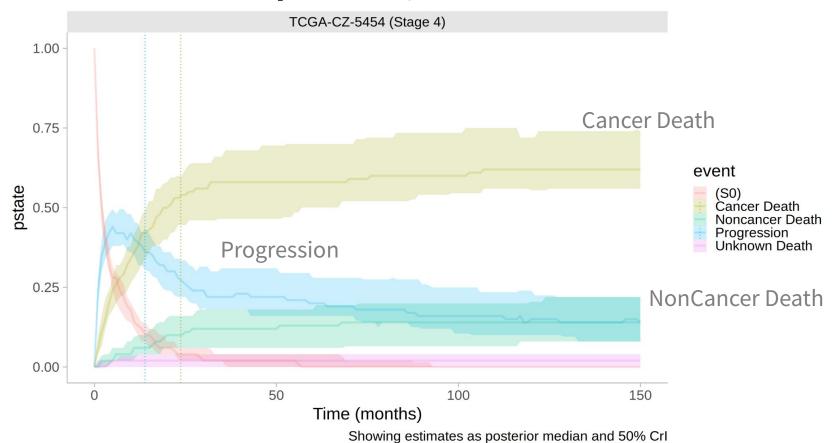
Expected Event-Free Time per Subject



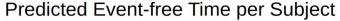
Brier Scores

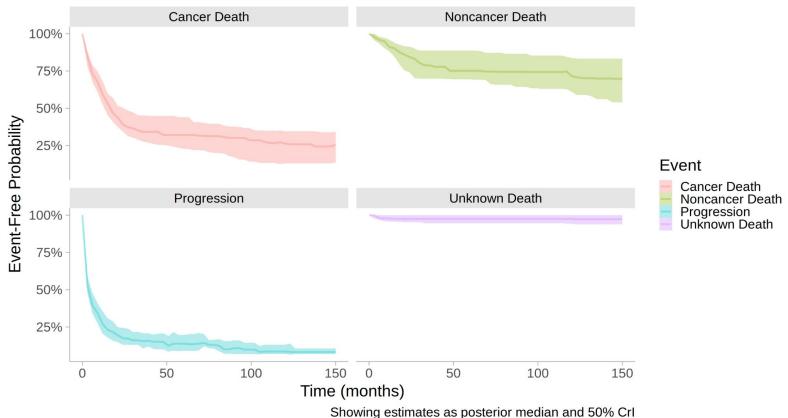
	Integrated Brier Score			
Event	Kaplan-Meier	Multi-State Model	Improvement	
Cancer Death	25.94	22.56	13.01%	
Noncancer Death	17.80	15.80	11.26%	
Progression	25.96	22.21	14.43%	
Unknown Death	5.11	5.12	-0.27%	

Predicted States per Subject



Predicted Survival Probability per Subject





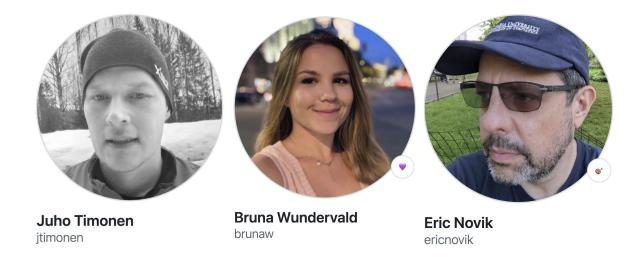
Why Multistate?

- Model event risk jointly
- Evaluate influence of previous events on future event risk
- Adjust for informative censoring
- Simulate likely clinical outcomes

• • •

Summarize net impact of intervention on outcomes

Thanks to the team at Generable



Generable

Thank you!!

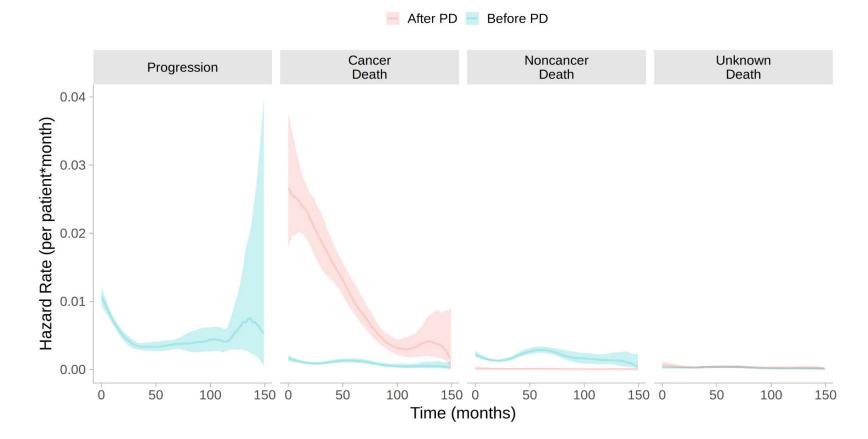
Questions? Get in touch

- jacki@generable.com
- generable.com

Built with

Appendix

Baseline Hazards



Baseline Hazards

