A Bayesian Model for the Validation of Magnetic Resonance Imaging (MRI) as a Surrogate Endpoint for a Clinical Endpoint

Leacky Muchene Hasselt University

Research team

Academia

- Uhasselt
 - Leacky Muchene
 - Ziv Shkedy
- Uantwerpen
 - Jelle Praet
 - Marleen Verhoye
 - Annemie Vanderlinden

Industry

- Janssen
 - Luc Bijnens
 - Darrel Pemberton
 - Marc Schmidt
 - Others
- Icometrix
- Histogenix
- Open Analytics
- The MRI Consortium

Introduction

- Alzheimer disease: age-dependent, irreversible.
- Non-invasive screening tools desirable for early detection and management.
- Identification and validation of potential bio-markers crucial- a lot of ongoing research.
- Evaluate the use of Magnetic Resonance Imaging (MRI) as a surrogate for disease progression

MR Image acquisition

Images downloaded from: TREM, MRSolutions

Numeric values for different parameters

- Diffusion kurtosis imaging
 - Mean Kurtosis (MK)
 - Axial Kurtosis (AK)
 - Radial Kurtosis (RK)
- Diffusion tensor imaging
 - Mean Diffusivity (MD)
 - Axial Diffusivity (AD)
 - Radial Diffusivity (RD)
 - Fractional Anisotropy (FA)

Note: MRI can be acquired longitudinally

Histology Staining: Cortex Motor

A: 4G8
B: MBP
C: GFAP
D: IBA1

- Different histology stains enable detection of different structures
- Plague deposits are quantified
 - % stained area
 - Mean intensity
- Numeric values for statistical analysis
 - MBP staining
 - GFAP staining
 - Iba1 staining
 - 4G8 staining
- Note: Only one set of histology measurements per animal

Data

- Histology can only be acquired once per animal.
- Cross-sectional studies at 2, 4, 6 and 10 months with MRI and histology available.
- Longitudinal MRI study with histology at 8 months
- Resulting into 4 cross-sectional (multivariate) datasets
- 23 brain ROI, 7 MRI parameters, 4 histology parameters
- -23x7x4 = 664 models

Evaluation of MRI as biomarker for histology

- Methodology: surrogate endpoints in clinical trials.
- Histology: "true" endpoint.
- MRI: "surrogate" endpoint.
- Can we use MRI as a surrogate to histology?
- Can we replace histology with MRI?

Illustration: Disease Effects

Two-stage Surrogacy Model

Given a 'True' endpoint T and a surrogate endpoint S,

The two-stage model for surrogacy can generally be denoted as:

Joint Model for MRI and Histology at ROI

For a given region in the brain, MRI parameter and histology stain

$$T_{ij} = \mu_{T_j} + \alpha_j Z_i + \varepsilon_{T_{ij}}$$
$$S_{ij} = \mu_{S_j} + \beta_j Z_i + \varepsilon_{S_{ij}}$$

$$\begin{pmatrix} \varepsilon_{T_{ij}} \\ \varepsilon_{S_{ij}} \end{pmatrix} \sim N\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_k , k = 1, 2$$

$$Transgenic: \Sigma_{1} = \begin{pmatrix} \sigma_{App,hist}^{2} & \sigma_{App,hist:mri} \\ \sigma_{App,hist:mri} & \sigma_{App,mri}^{2} \end{pmatrix}$$

$$Wildtype: \Sigma_2 = egin{pmatrix} \sigma_{Wt,hist}^2 & \sigma_{Wt,hist:mri} \ \sigma_{Wt,hist:mri} & \sigma_{Wt,mri}^2 \end{pmatrix}$$

Two Measures of Surrogacy

1: Individual-level surrogacy

$$\Sigma_k \Rightarrow \rho(MRI, Hist.)$$

$$Transgenic: \rho_1 = \frac{\sigma_{App,hist:mri}}{\sqrt{\sigma_{App,mri}^2.\sigma_{App,hist}^2}}$$

Wildtype:
$$\rho_2 = \frac{\sigma_{Wt,hist:mri}}{\sqrt{\sigma_{Wt,mri}^2.\sigma_{Wt,hist}^2}}$$

2: Disease- level surrogacy

Correlation between the disease effects

$$D \Rightarrow \rho(\alpha_j, \beta_j)$$

$$\rho_D = \frac{\sigma_{\alpha,\beta}}{\sqrt{\sigma_{\alpha}^2 . \sigma_{\beta}^2}}$$

Predicting effects in histology by the effects in MRI

Bayesian Prior Specification

$$\mu_{S_{j}} \sim N(0.0, \tau_{SS}),$$
 $\mu_{T_{j}} \sim N(0.0, \tau_{TT}),$
 $\tau_{SS} \sim \text{Gamma}(0.001, 0.001),$
 $\tau_{TT} \sim \text{Gamma}(0.001, 0.001),$
 $\Sigma_{1}^{-1} \sim Wishart(R_{W}, \phi),$
 $\Sigma_{2}^{-1} \sim Wishart(R_{A}, \phi),$
 $\begin{pmatrix} \alpha_{j} \\ \beta_{j} \end{pmatrix} \sim N\left(\frac{\overline{\mu}_{S}}{\overline{\mu}_{T}}, D_{22}\right),$
 $D_{22}^{-1} \sim \text{Wishart}(R_{D_{22}}, \phi),$
 $\overline{\mu}_{S} \sim N(0.0, 1.0E - 6),$
 $\overline{\mu}_{T} \sim N(0.0, 1.0E - 6).$

Example 1Cortex Motor: MRI-AK with GFAP Staining

Cortex Motor: Observed Data (MRI-AK with GFAP)

Results: Cortex Motor (MRI-AK with GFAP)

Posterior means with error bars

- MRI (AK) is a good biomarker for histology at disease-level
- We can predict the effect in histology using the effect in MRI

- Poor individual-level surrogacy
- We cannot predict histology values from MRI values for an individual

Example 2Cortex Motor: MRI-RD with GFAP Staining

_ _ _

Cortex Motor: Observed Data (MRI-RD with GFAP)

Results: Cortex Motor (MRI-RD with GFAP)

- MRI (AK) is a poor biomarker for histology at disease-level
- We can **NOT** predict the effect in histology using the effect in MRI

We cannot predict histology values from MRI values for an individual

Conclusion

- MRI has potential to be a biomarker at disease level
- Surrogacy depends on MRI parameters, histology stain and brain region
- Assess model improvement at resolution higher than the ROI (unit level analysis)
- Evaluation of multivariate markers jointly?

