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Process development

1. Engineering runs: to make the process running

2. Characterization phase: to explore its basic properties

3. Factors optimization: designed experiments, optimization

4. Validation phase: to evaluate the final process setup 

5. Production phase: to be able to detect any possible issues occurring in 
the process



Process performance qualification (PPQ) 
protocol 

• Protocol of final validation experiment

• Data available from previous stages (engineering runs, 
characterization study, DoE)

• Different settings for different data sources



Example Data Set (simulated): 

• 12 Batches from pre-PPQ studies of varying purpose

• 4 Batches: 8 Bags, 5 observations per bag

• 8 Batches: 8 Bags, only 1 observation per Bag

• Simulated data set based on structure of real data set (but all the 
value of parameters are completely artificial)

• Response: % of label claim
• Acceptance criteria: each individual value between 90-110
• Future experiment: 3 Batches, 10 Bags, 1 Sample



Data set



PPQ protocol 

• Main question:
• Sampling plan for validation experiment

• Our focus:
• Asses the quality of the process
• Estimate probability of passing validation experiment (given the 

sampling plan)



Methodology



Frequentist framework

• ܻ ൌ ܰሺߤ, ଶሻߪ

• Point estimate of ߤ

• 95% Confidence interval on ߤ: confidence statement on parameter 
estimate

• 99% Prediction interval for ܻ: interval containing future observation 
with confidence of 99%

• 99%/95% Tolerance interval for ܻ: interval containing 99% future 
observations with confidence of 95%



99%/95% Tolerance interval

• One-sided: confidence statement about 99% quantile 

• Two-side: more complex problem
• Typically centred around the mean 
• Normal case approximately (one of many formulas):

ොߤ േ
ߥ 1 ൅ 1

ܰ ଶሺଵି௣ሻ/ଶݖ 	

߯ଶଵିఈ,ఔ
ଶ෢ߪ



Bayesian framework

• ܻ ൌ ܰሺߤ, ଶሻߪ

• Posterior distribution of parameters available

• Sampling from posterior can be done (within fitting the chain)

• Samples of individual values can be obtained

• Simulation of future experiment can be done



Posterior probabilities of “success”

1. At each iteration of MCMC simulate future experiment

2. Apply acceptance criteria on the simulated experiment (simple 
threshold or complex decision tree)

3. Record indicator of passing/failing the criteria 

4. Mean of indicator = Posterior probability of passing the test for future 
experiment 

• Assumption: future process will behave similarly to current one
• Typically conservative solution



“Bayesian” 99%/95% tolerance intervals

1. At each iteration, sample parameters ߤ, ଶߪ

2. Compute quantiles of respective normal distribution 

3. Obtain posterior distribution of quantiles

4. Estimation 99%/95% tolerance interval

• Wolfinger vs Krishnamoorthy & Mathew: how to determine two-sided 
tolerance interval?



Comparison: W vs K&M

K&M: 95% of points 
in top‐left rectangle, 
i.e. within bounds 

W: 5% of points in 
bottom‐right 
rectangle, i.e. outside 
of the bounds 

Points in these areas causes difference between methods.



Alternative Bayesian tolerance intervals

• Sampling from the posterior distribution of individual values 

• 99% content Tolerance interval: 99% credible interval on individual 
values

• Related to 99% prediction interval 

• Interpretation of uncertainty in terms of posterior distribution



Application



Data set



Model

• The following linear mixed model was fitted to the data of all 
batches: 

௜௝௞ݕ ൌ ଴ߤ ൅ ܾ௜ ൅ ܿ௜௝ ൅ 	௜௝௞ߝ
where 
• ௜௝௞ݕ = response for the k-th value of j-th bag in the i-th batch
• ଴ߤ ൌ the process mean
• ܾ௜ ൌ random effect of i-th batch: ܾ௜ ~ N(0,ߪ௕ଶ)
• ܿ௜௝ ൌ random effect of j-th bag of i-th batch: ܿ௜௝ ~ N(0,ߪ௖ଶ)
• ௜௝௞ߝ ൌ residual error: ߝ௜௝௞ ~ N(0,ߪఌଶ).



Note on priors

• Typically “non-informative” type of priors

• Sometimes experiments from previous stages (DoE) are used 

• Their relevance is questionable

• Their questionable relevance corresponds tothe reason why they are 
not included in the data set to be analysed



Output

Source of variability Median  2.5% CI 97.5% CI Truth

Batch 0.55 0.36 0.92 0.50

Bag 0.31 0.24 0.38 0.30

Residual 0.25 0.22 0.28 0.25

Estimates Mean 2.5% CI* 97.5% CI Truth

Process mean 99.82 99.48 100.16 100.00

*CI here stand for Credible Interval



Output: tolerance intervals

Tolerance intervals Lower Upper

99%/95% Wolfinger 97.60 102.05

99%/95%  K & M 97.20 102.44

99% content Tolerance interval  97.82 101.84

True quantiles (0.5%, 99.5%) 98.37 101.63

• We do expect that TIs will be wider than true quantiles

• We do expect that 99%/95% TIs will be wider than 99% content

• We do expect to see difference between W and K&M



Output: Posterior probability

• Typical result in practical applications in late stage of development

• Real meaning: “it has never happened in my simulated MCMC that…”

• Depends on number of chains, iteration, thinning & correlation

• In this example (worst case scenario) >99.91%

*Not really 1

Posterior probability

Passing acceptance criteria 1*



Conclusions



Summary

• Posterior probability and TIs connected, but approaching main 
question from different viewpoints

• Reporting both of them has added value 

• Bayesian approach allows us to:
• estimate both quantities directly
• fit more complex models without much extra effort
• use of prior information

• BUT, be careful with: 
99%/95% TIs computation
specification of priors
computational time
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