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® The Manufacturing Process and Multiple Uncertainties
¥ A Bayesian approach

® Prediction of the Complete Process

Modeling each step from historical data

Posterior predictive distribution

W Sensitivity to Process and Formulation Parameters

® Take Home Messages
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Process Steps

Bioreactor

Bioreactor

Process parameter variability

Hold Time Model parameter estimate uncertainty
_ Measurement
In Process Hold Times error
Slope estimate uncertainty
estimate u Batch/Run...
Duration variability effect
B Formulation Model
DS Shelf Life Formulation parameter variability uncertainty
Shelf life
DP Shelf Life Degradation rate estimate uncertainty
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GUM methodologies

B The ideais to combine systematic and random errors of a
process

Here, what we do is a strong parallelism to GUM

In GUM, uncertainties are standardized (e.g. % loss) and combined for
instance using Gaussian properties

Y ~ N(py,ov)

i v) — » Z=X+Y—— Z ~ N(px + py, 0% + 0%).
X ~ N{px,0y)

B Whatlacksin GUM is the uncertainty of the... uncertainty
measurements, easily handledin the Bayesian framework
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Bayesian manifesto

® Why a Bayesian approach ?
Because we want to predict (outcome of the process steps)
Because we want to make probabilistic statements of an outcome
-> P(success) or P(OOS)
Because we may (sometimes) have prior knowledge

Because, thanks to MCMC simulations, we can handle simple to very complex
models in a unified framework (yes, speed of implementation matters more than
running speed of the samplers)

In general, models are pretty simple. e.g. two-way random ANOVA models... but with
unbalanced data, prediction as a frequentist is already not a good option...

Because, thanks to Monte-Carlo methods, | can pool and propagate all
uncertainties from the beginning to the end of the process

Why focus on maximum likelihood when we can play with all the posterior distribution ?

Because we want to predict

|
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Objective: Simulate the Complete Process 2\ Arlenda
How ?

1. Modeling

For each step, fit a Bayesian Generalized Multivariate Linear Mixed
Model based on historical data

Example:

gy) =XB+Zy +e

With y the random effects (e.g. run, batch), and € the measurement error.

Uncertainties in 8, y and € due to measurement and modelling
- Impact on prediction !

- To obtain “good” prediction, e must be small, and  and y must be
estimated with quality (small posterior uncertainty)

Arlenda © 2016

|



How to make predictions
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Monte-Carlo Simulations

where the “new observations”
are drawn from distribution
“centered” on estimated location
and dispersion parameters
(treated wrongly as “true
values”).

/ 4
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Predictions

First, by drawing a mean and a
variance from the posteriors and,
second, drawing an observation
from resulting distribution

p(i|y)= [ p(i16)p(O|y) o
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MCMCglmm, small code example

### Model
require(MCMCglmm)
m = MCMCglmm(fixed =cbind(y1,y2) ~ trait + trait:time +
trait:factor1 + trait:factor1:time- 1,
data = data,

"o

family = ¢("gaussian", “gaussian"),

rcov = ~ us(trait):units,

random = ~ idh(trait):Run +idh(trait):Site,

prior=list(R=list(V=R_scale,nu=3),
G=list(G1=list(V=diag(Run_scale),nu=3),
G2=list(V=diag(Site_scale),nu=3))),

nitt = 130000,

burnin= 30000, |

thin=10) |

-20 0 20 40 60

Timea (mnnths)
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MCMCglimm, small code example

### Model
require(MCMCglmm)
m = MCMCglmm(fixed = cbind(y1,y2) ~ trait + traittime + Singular syntax for
traitfactor1 + traitfactor:ime- 1, fixed effect formula
data = data,

family = ¢("gaussian", “gaussian"),

rcov = ~ us(trait):units,

random = ~ idh(trait):Run +idh(trait):Site,

prior=list(R=list(V=R_scale,nu=3),
G=list(G1=list(V=diag(Run_scale),nu=3),
G2=list(V=diag(Site_scale),nu=3))),

nitt = 130000,

burnin= 30000,

thin=10)
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MCMCglimm, small code example
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Advance your business wi ith statistics

### Model
require(MCMCglmm)
m = MCMCglmm(fixed =cbind(y1,y2) ~ trait + trait:time +
trait:factor1 + trait:factor1:time- 1,
data = data,
family'=ig('gaussian", "gaussian),
rcov = ~ us(trait):units,
random = ~ idh(trait):Run +idh(trait):Site,
prior=list(R=list(V=R_scale,nu=3),

G=list(G1=list(V=diag(Run_scale),nu=3),

G2=list(V=diag(Site_scale),nu=3))),
nitt = 130000,
burnin= 30000,
thin=10)
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Can handle several
link functions
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MCMCglmm, small code example Aavanc o b

### Model
require(MCMCglmm)
m = MCMCglmm(fixed =cbind(y1,y2) ~ trait + trait:time +
trait:factor1 + trait:factor1:time-1,

data = data,

family = ¢("gaussian", “gaussian"), Estimate the covariance
reov = ~ us(traif):units, of residuals and handle
random = ~ idh(trait):Run +idh(trait):Site, multiple random effects,

prior=list(R=list(V=R_scale,nu=3),
G=list(G1=list(V=diag(Run_scale),nu=3),
G2=list(V=diag(Site_scale),nu=3))),

nitt = 130000,

burnin= 30000,

thin=10)

even unbalanced
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MCMCglimm, small code example
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### Model
require(MCMCglmm)
m = MCMCglmm(fixed =cbind(y1,y2) ~ trait + trait:time +
trait:factor1 + trait:factor1:time-1,
data = data,
family = ¢("gaussian", “gaussian"),
rcov = ~ us(trait):units,
random = ~ idh(trait):Run +idh(trait):Site,
prior=lisi(R=lisi(V=R_scale,nu=3),
G=lisi(G1=lisi(V=diag(Run_scale),nu=3),
G2=list(V=diag(Site_scale),nu=3))),

nitt = 130000,
burnin= 30000,
thin=10)
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For each variance
component, provide the
scale matric and degrees
of freedom for the prior
distribution (inverse-
Wishart.
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Objective: Simulate the Complete Process 2\ Arlenda
How ?

2. Posterior Predictions

If the measured CQAs remain the same during the whole process (e.g.
API concentration), the predictions at step N could be written (random
effects are omitted for simplicity):

P |y) = [ p(@16) p(6y) a8

= Z[X;BS] +  Ey
s=1
\ Y J \ J

Where:

Y* is the new matrix of responses
X; is the new matrix of factors at step s
B.is the matrix containing the posterior distributions of regression parameters at step s

Ey is the matrix of measurement error at step N
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® Use your prior knowledge! For example: the distribution of
measurement error at each step should be known.

B When several CQAs are to be modeled together, the variance-
covariance matrix might be tricky to model. Use informative
prior distributions.

W Conjugate prior for scale parameters is the Inverse Wishart,
defined by two parameters: degrees of freedom, and scale matrix.

W |t's sometimes not easy to interpret the Wishart distribution. A
possible solution is the use of Correlation matrix instead of
Covariance matrix (but need to go from "simple”™ MCMCglmm to
in-house implementation of e.g. a Stan sampler)
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Prior
Distribution

.

N
--v-

New Information

Posterior
Distribution

Based on a point estimates Basedon a distribijtion

Frequentist Bayesian
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Objective: Simulate the Complete Process 2\ Arlenda
How ?

2. Posterior Predictions (continued)
P |y) = [ p(@10) p(6|y) do

From posterior chains of parameters, draw the joint posterior prediction
of CQAs (Y) at the target operating conditions (X).

Sometimes, Process Parameters (PPs) are not 100% controlled. It is
possible to randomly draw PPs across a specific range.

At every step, replace the posterior chain of intercept with the
predictive distribution of the previous step (input distribution).

The measurement error should only be included when “observing” the
data (see later)

At every step, obtain marginal and joint probabilities to meet
specifications, when they exist

Arlenda © 2016 16




2 Arlenda

Predictions from MCMCgimm model

### Simulation of uncontrolled process parameters (CENTERED)
new.data = data.frame(

time =seq(-6,6,1),

factor1 =rnorm(1e4,0, 5)

)

modmat <- model.matrix(~time*factor1, new.data)

### Predictions from Posterior Chains
### MCMCglmm modelis m
Y = matrix(nrow = 1e4,ncol = 2)
for(i in T:nrow(Y))
Beta <- t(matrix(m$Soll[i,], 2, 4))

E_Run <-mvrnorm(1,rep(0,2), Sigma = diag(m$VCVIi,1:2]))
E_Site <- mvrnorm(1,rep(0,2), Sigma = diag(m$VCV[i,3:4]))
E_Residuals <-mvrnorm(1,rep(0,2), Sigma = matrix(m$VCVJi,5:8], 2, 2))

Y[i,] <- modmat[i,] %*% Beta + E_Run + E_Site + E_Residuals
}
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Sensitivity / robustness of Process and DA Aflenda
Formulation Parameters

Process characterization studies can be used to
simulate the distribution of Quality Attributes

across ranges of the CPPs 4 y = f(x)
Determine y = f(x) Expedggtibution of
from process or \GiaRibite ek to the

Proceas BNy of y

formulation studies

_________ \ Assay

I Variability
|

Utilizes normal
variation in process
parameters

y , quality attribute

Platform knowledge,
manufacturing facility,
and equipment may
inform about
parameter variability

I
1+ Process parameter

I variability

>

X, process or formulation parameter
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Identify Primary Source of Variability and 2\ Arlenda
Estimate prediction and P(O0S)

Parameters that impact CQAs X
and have a sufficiently wide :
distribution are likely sources "
of variability

No impact and very narrow distribution
Some impact but narrow distribution

Meaningful sources of variability
Some Impact and wider distribution

Prediction Profiler

Quality
Att.rit?ultel
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Combining Process Steps and Stability
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Output from previous unit operation used
as inputto the next: y;.; = f(x,y:)

Fermentation

:

|Step1 H Step 2 |

Purification

Formulation

[ step1 1% step2 f step3 |
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Statistical uncertainty — Bayesian analysis:
Yes1 = f(x,y:) + e(process parameters) + s

f(x)

e(6) L§
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Outcome

60
|

QA1
40
|
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1.000

QA2

0970 0985

Bioreactor DS DP SL

\ A J
Y Y

Manufacturing Process Stability (holding times, Shelf-life)
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Impact of changes of the process

B Example : a change of formulation improving long term stability
and batch-to-batch variability

/

—_——

1T T T T 17 T "1
0O 10 20 30 40 50 60 70
Time (months)
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0 10 20 30 40 50 60 70
Time (months)
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Control strategy

B Raise preliminary but appropriate out-of-control, alert, and batch
rejection atrelease

It allows controllingtherisks and
keep the quality constant over

time. I NE x (2 )| b

\ o o \:> 8 ° % o . o © ®
You maintainyourinitial claimand || . ¢ % ¢ o | 4 ¥ $ e
monitor it with appropriatelevels t LSL
of risk. 1
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Take Home Messages Advance your business with statistics

W Bayesian statistics allow the simulation of a sample from the
bioreactor to the Drug Product shelf life.

W SPC generally requires a rather large amount of batches to derive
control limits and/or estimate the capability of a process.
Predictions of the complete process allow estimating the P(OOS)
at each step, with far fewer observations, and using historical
data

Hence, Bayesian predictive intervals can also be used as preliminary
control limits, defining a plausible control strategy, sooner during the
development !

W Prior distributions, when informative, can result in a massive gain
in degrees of freedom, directly impacting predictive uncertainty!

B Prediction is the key...
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