Potential prior-data conflict when using informative priors

Timothy Mutsvari (Arlenda) Rosalind Walley (UCB)

Bayes-pharma, Leuven 17 – 20 May 2016

Outline

- Introduction to active comparator studies
- **Prior predictive distribution**
- Case study
- Assessment of power of prior data-conflict test
- Comparison of testing approach with a mixture approach
- **Case study results**
- Conclusions

Introduction

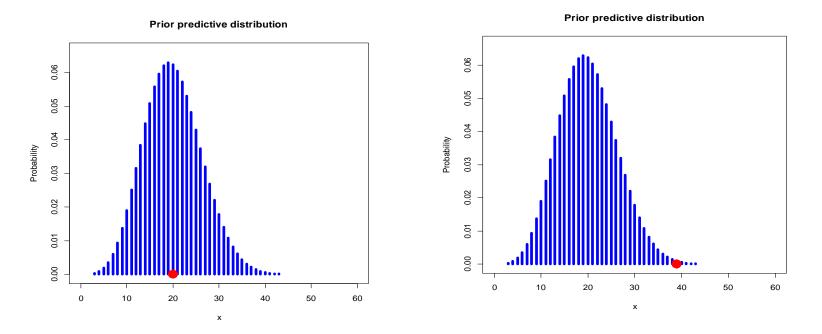
- Active comparator: a marketed drug presumed to have beneficial effects
- Clinical trial setting: compare **new trt** vs **active comparator** (vs placebo):
 - new trt vs active comparator benchmarking new drug
- High attrition in Phase II studies hence should be executed as quickly and economically as possible
- Features:
- Difficult to do a head-to-head if standard of care is a drug cocktail
- Active comparator studies require large sample sizes (usually done in phase 3)
- Possibility of published data or in-house data on performance of marketed drug → informative prior → Bayesian methods
- Risk that an apparent mismatch is observed between the prior and the data

3

Prior predictive distribution

- Before a new study is run, the uncertainty in the parameter of interest, θ say, is represented by the prior distribution, $p(\theta)$
- The unconditional distribution of data summary e.g. response rate is represented by the "prior predictive distribution", obtained by averaging over $p(\theta)$, to get:

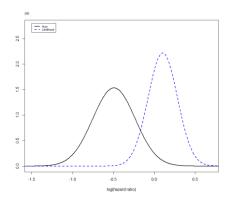
$$p(x) = \int p(x|\theta)p(\theta)d\theta$$


- Example
 - Given a beta prior $p(\theta) \sim \text{Beta}(\alpha, \beta)$ and binomial likelihood $r \sim \text{Bin}(n, \theta)$
 - The prior predictive is a beta-binomial: $p(r) \sim {n \choose r} \frac{B(r+\alpha, n-r+\beta)}{B(\alpha, \beta)}$
 - Normal likelihood $N(\theta, \sigma^2)$ and normal prior $p(\theta) \sim N(\theta_0, \sigma_0^2)$
 - The prior predictive is a normal: $p(\tilde{y}) \sim N(\theta_0, \sigma_0^2 + \sigma^2/n)$
- Prior predictive distribution provides a pre-study prediction of the data based on the selected prior, hence plausible to use it in the assessment of the compatibility of the data and the prior

4

Is the prior suitable?

- Assess by comparing the observed study mean with the "prior predictive distribution"
- Declare prior-data conflict if the observed study mean is in the extremes of the prior predictive distribution (5% level)



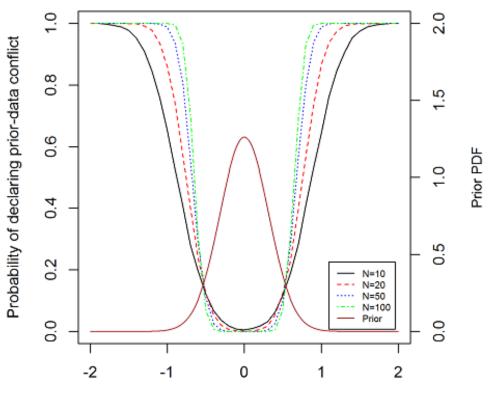
• Assumption: the statistical model used is appropriate as an unsuitable model could also trigger an extreme test statistic

Case Study: UK Medical Research Thiotepa Study

- Study in superficial bladder cancer
- Efficacy end-point: time to first recurrence
- We focus on the comparison of 2 of the 3 treatment arms:
 - ➤ control group, n=131
 - ➢ immediate installation of thiotepa 30mg, n=126

- Concern expressed about apparent mismatch between prior and data. However, prior-data conflict p-value is **0.06**. Raises two issues:
 - > How "powerful" is the prior data conflict test?
 - > What should you do if you observe apparent prior data conflict?

Simulation Methodology


Assessment of power for prior-data conflict test

- For normal likelihood prior with known variance cut-offs were obtained analytically
- Sample sizes typically encountered in phase II studies (n=10 to 100)
- Number of simulations = 10 000 a range of values of mu [-2, 2]
- Selected prior distribution: $p(\theta) \sim N(0, 0.1)$
- Cut-offs: 95%

Assessment of power for prior-data conflict test

Using 5% cut-offs

True mean of data

Comparison of Two approaches

Prior-data conflict testing approach

- Construct prior predictive distribution using the informative prior
- Prior-data conflict is declared if the observed mean lies outside the (1-alpha)100 % cut-off points of the prior predictive distribution
- If prior data conflict **is not** declared, continue with informative prior
- If prior data conflict is declared, change to an uninformative prior

Comparison of Two Approaches

Mixture prior

- A mixture/robust prior with two components
 - 1st component represents the precise information about the active comparator with high prior probability
 - 2nd component represents a comparatively vague component, illustrating a lack of certainty of knowledge about the parameter with a small prior probability
- For the normal case, if $p_0(\mu)$ and $p_1(\mu)$ represent the precise and vague prior distributions for the treatment mean, respectively., the mixture prior distribution is then

$$p(\mu) = \xi.f(y;\,\mu_0,\sigma_0^2) + (1-\xi).f(y;\,\mu_1,\sigma_1^2)$$

• Concept: In presence of prior-data conflict use diffuse prior, otherwise use precise

10

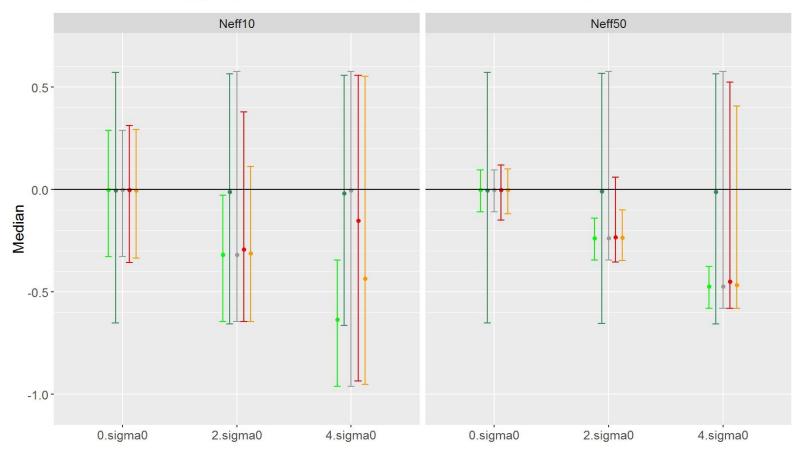
Simulation Methodology

Head to head comparison of the testing and mixture approaches

Data:

> Normal with mean 0, and known variance, σ^2 , sample size n=10 (or 100)

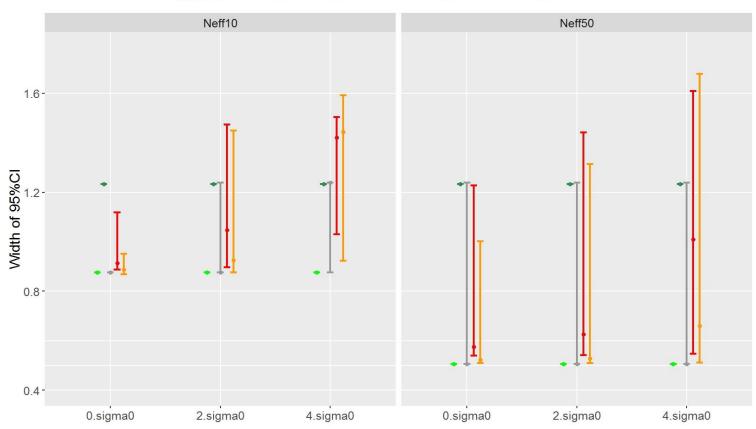
Prior for the mean:


- > Normal prior, or mixture of two normal priors with the same mean
- > The precise prior \rightarrow effective sample size of n or 5n. St. dev.= σ_0
- > The diffuse prior \rightarrow effective sample size of 0.01n
- > Discrepancy between the true mean of the data and the mean of the priors was set to be 0, $2\sigma_0$ or $4\sigma_0$

Five analyses:

- Precise prior alone
- Diffuse prior alone
- Prior-data conflict testing approach
- > Mixture approach with prior probability ξ =0.7 for the precise prior
- > Mixture approach with prior probability ξ =0.9 for the precise prior

Compare the testing and mixture approaches


Case - Precise - Diffuse - Prior-data conflict - Mixture E=0.7 - Mixture E=0.9

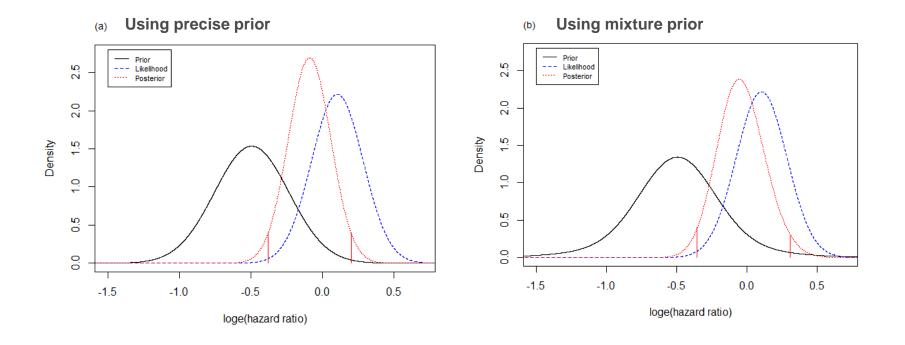
Sigma0 = sd of the precise prior

Compare the testing and mixture approaches

Case - Precise - Diffuse - Prior-data conflict - Mixture E=0.7 - Mixture E=0.9

Sigma0 = sd of the precise prior

urb


Compare the testing and mixture approaches

Effective sample size	10 (n)			50 (5n)		
Discrepancy (as a multiple of σ_0)	0	2	4	0	2	4
P(prior data conflict declared)	0.00	0.22	0.89	0.03	0.10	0.35
P(precise prior ξ =0.7)	0.94	0.86	0.25	0.95	0.94	0.85
P(precise prior ξ =0.9)	0.98	0.96	0.56	0.99	0.98	0.96

Case Study Results

UK Medical Research Thiotepa Study in superficial bladder cancer

Posterior = N(-0.09, 0.15²)

Posterior = 0.61*N(-0.09, 0.15²) + 0.39*N(0.04, 0.17²)

Conclusions

- Whenever an informative prior is used, prior-data conflict is a potential issue
- Prior data conflict test is a way to assess this, but:
 - May be underpowered for phase II studies
 - Not obvious what to do if prior data conflict is declared. We focused on reverting to a noninformative prior
- When the observed discrepancy is small: Prior-data conflict testing ≈ Mixture analysis ≈ standard analysis with informative prior
- When the observed discrepancy is larger both proposed methods have some attractive features over the standard analysis. For example, wider posterior credible intervals than when there is no observed discrepancy.
- Whichever approach is selected, it is vital that at the design stage the operating characteristics of analysis should be assessed and discussed with all stakeholders

References

Prior data conflict:

• Evans & Moshonov (Bayesian Analysis 2006; 1(4):893–914)

Mixture models: Bolstat

• John Wiley and Sons: New Jersey, 2007, pp. 261–270

Simulation:

• Mutsvari, Walley & Tytgat (Pharmaceutical Statistics 2015; 15(1): 28-36)

Thiotepa Study:

• UK Medical Research (Journal of Urology 1994; 73(6):632–638)

Backup

