

Model Based Network Meta-Analysis:

A framework for evidence synthesis of doseresponse models in randomised controlled trials

David Mawdsley University of Bristol

Meg Bennetts Martin Boucher

BayesPharma, Leuven, 18 May 2016

K Motivation

- Network meta-analysis (NMA) lets us compare many treatments and assess consistency of treatment effects in a connected network
- Model based meta-analysis (MBMA) incorporates dose and/or time course information in a meta-analysis
- We propose a framework to combine both – MBNMA

KStructure

- Example data
- Dose in NMA
- Dose response models
- MBNMA methodology
- Evidence consistency

Modelling approaches in NMA

- Single dose for each treatment
 - Does not use all available information
- "Lump" doses?
 - Ignores dose response
 - Risk of inconsistency and heterogeneity
 - How to interpret?

Modelling approaches in NMA

- Treat each agent-dose combination as a separate treatment?
 - Sparse network. Ignores dose-response

Modelling approaches in NMA

- Treat each treatment dose combination as a separate treatment?
 - Sparse network. Ignores dose-response
- Model dose response curve.

Model-based NMA

• Extend NMA framework

$$r_{ik} \sim \text{Binomial}(\theta_{ik}, n_{ik})$$

$$logit(\theta_{ik}) = \mu_i \qquad \text{when } k = 1$$
$$= \mu_i + \delta_{ik} \quad \text{otherwise}$$

Higgins P T et al (1996) Borrowing Strength from External Trials in a Meta-Analysis *Stats. in Medicine 15(24), 2733-2749* Dias, S et al. (2013). Evidence synthesis for decision making 2: a generalized linear modeling framework ... *Medical Decision Making 33*(5), 607–17.

$$f(x,t) = \frac{\operatorname{Emax}_t \cdot x}{\operatorname{ED50}_t + x}$$

 Apply consistency equation at the level of the dose response curve:

• For a 2 arm trial:

$$\delta_{i,k} \sim \mathcal{N}(f(x_{ik}, t_{ik}) - f(x_{i1}, t_{i1}), \sigma^2)$$

- Apply multi-arm correction for >2 arm trials (see Dias et al.)
- Can consider other dose-response models

Model fitting

- Models fitted using JAGS
- Vague priors used throughout
- Model ED50 on log scale
- Assume class effects on Emax and ED50
 - ED50 class effect required for parameter estimation (requires dose standardisation)
 - Emax class effect improved model fit

Plummer (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003)

K Methods

- Compare:
 - Lumped NMA
 - Split NMA
 - Linear model-based NMA
 - Emax model-based NMAs
 - Emax and ED50 class effect
- Assess goodness of fit using DIC, residual deviance and heterogeneity

KResults

Model	DIC	Residual Deviance	σ
Lumped NMA	330.5	189.0	0.373 (0.289 to 0.469)
Split NMA	325.2	189.6	0.270 (0.178 to 0.376)

182 data points

KResults

Model	DIC	Residual Deviance	σ
Lumped NMA	330.5	189.0	0.373 (0.289 to 0.469)
Split NMA	325.2	189.6	0.270 (0.178 to 0.376)
Linear MBNMA (w. int)	321.0	188.7	0.274 (0.192 to 0.371)
Emax (ED50 class)	321.8	191.5	0.249 (0.159 to 0.350)
Emax (2x class effects)	318.7	191.9	0.242 (0.160 to 0.335)

182 data points

Comparison to NMA and MBMA

- Avoids lumping doses and/or times
- Makes full use of data
- Allows comparisons in absence of direct evidence
- Interpretable results
- Consistency equations
 - Ensure self consistent estimates
 - Direct and indirect evidence may be in conflict

Evidence consistency

- Where direct and indirect evidence exist for a contrast:
 - Extract direct evidence for the contrast to separate network
 - Only indirect evidence for contrast remains
- Compare effect estimates for direct and indirect evidence
 - Need to compare across whole dose range
- Similar idea to node splitting in NMA

Evidence consistency

- We fit models for direct and indirect evidence simultaneously
 - Sharing σ
 - Sharing $\overline{ED50}$ and σ_{ED50} , \overline{Emax} and σ_{Emax}
 - Required since limited direct evidence on some contrasts
 - May obscure inconsistency
 - Repeat for each loop of evidence

K Evidence consistency

- 12 Loops of evidence
- No evidence of inconsistency between direct and indirect evidence on any contrast
- Shared class effects may obscure inconsistency since common means assumed
- Developing cross-validation type approach to avoid estimating model for direct evidence

We Discussion and Future work

- Simulation study
 - Explore data requirements & model performance
- Cross validation for evidence consistency
- Other functional forms of dose response
- Incorporation of dose and time course information

KAcknowledgements

Nicky Welton Sofia Dias

Meg Bennetts Martin Boucher

ConDuCT Hub

MRC grant: MR/M005615/1

