Decision Making in Basket Trials: A Hierarchical Weights Approach

David Dejardin¹, Thomas Bengtsson², Ulrich Beyer¹, Daniel Sabanés Bové¹ and Paul Delmar¹.

¹ F. Hoffmann-La Roche, Basel ² Genentech, San-Francisco

BAYES 2016 Conference Leuven - 2016

Dejardin et al.

Basket Trials

Outline

- Model
- Simulations

Gating

Introduction: Basket Trials

Definition of Basket trial (here!)

Multi-arm trail to test a mechanism of action (MoA) in multiple indications

- MoA often applicable across of indications e.g. Cancer immuno-therapy (CIT)
- Fast decision making on MoA
- Fast decision making in most promising indication

Introduction: Basket Trials

Context

- Early phase oncology trials
- Extension cohorts

Goal of basket trial designs: (here !)

- Establish evidence of MoA across indications
- Strengthen the evidence of MoA by borrowing from multiple indications

Pre-requisite: Belief that if some indications show efficacy \Rightarrow increased confidence of efficacy in other indication

Introduction: Basket Trials or not? (here!)

What is within our definition of basket trials:

- Same agent tested in multiple indications sensitive to the MoA of the drug
- Different agents (combinations) with the same MoA in one or more indications
- \Rightarrow Borrowing makes sense

What is **not** our definition of basket trials:

- Umbrella trials = Different MoA (eg. different drugs) in single indication
- Trials with treatment selection by biomarker / mutation

\Rightarrow Borrowing between indications questionable

Dejardin et al.

Basket Trials

Introduction: Framework

- Binary response
- Bayesian decision making
- Dose already predefined (no dose escalation within basket trial)

Existing approaches:

- Hierachical structure on response (eg. Thall et al. 2003)
- Mixture of hierarchy (Neuenschwander et al. 2015)

Limitation of the hierarchical structure on response

ORR linked through common hyperparameter

 \Rightarrow Same ORR/difference across indications

Bayesian decision making (Gating): Single indication

- Early phase gating: Decision to stop or continue development
- Decision criteria based on Posterior probability :

 $GO: PP = P[p > \theta_u | data] > 0.8$

- *p* = probability of response
- $\theta_u = upper target$
- 0.8 = confidence level
- P[p > θ_u|data] computed from beta(r + a, n r + b)
 n = number of subjects in ind., r = number of responses
- Prior (a, b) chosen as vague or SOC

Basket trial :

Alternative proposal: Hierarchical Weights Design

Basket trial : Hierarchical Weights Design

Idea:

- Prior for p_j is a **mixture**
- Hierarchy on weights
- π_i^{inf} favors target
- Gating based on PP computed from mixture prior

Hierarchical Weights Design

Prior on p_j = **mixture prior** :

$$\pi(\mathbf{p}_j) = \mathbf{w}_j \ \pi_j^{inf}(\mathbf{p}_j) \ + \ (1 - \mathbf{w}_j) \pi_v(\mathbf{p}_j)$$

where

- w_j is an indication-specific weight:
 - w_j not pre-specified
 - Hierarchical structure on w_j:
 - $logit(w_j) \sim N(\theta, \sigma_j)$
 - Hyper parameter for weights $heta \sim N({\sf logit}(0.1), \sigma)$
 - \Rightarrow Mean for θ favors vague prior
 - σ_j and σ small to force borrowing
- $\pi_v(p_j)$ is a vague prior for $p_j = \text{Beta}(1/2, 1/2)$

Informative part of prior $\pi_i^{inf}(p_j)$

 $\pi_i^{inf}(p_j)$ informative prior with mass above target for p_j

- Indication specific
- Corresponds to efficacious treatment (above target)

Gating

GO and No GO decisions: Posterior probability computed from 2 different priors:

•
$$PP_{Go} = P[p_j > \text{GO target}|\text{obs. in all ind.}]$$

GO gate $\leftarrow \pi_j^{inf}(p_j)$ close to GO target and above

2
$$PP_{NoGo} = P[p_j < \text{No GO target}|\text{obs. in all ind}]$$

No GO gate $\leftarrow \pi_j^{inf}(p_j)$ close to No GO target and below

Gating as follows:

- GO if $PP_{Go} > 0.8$,
- if not, No GO if $PP_{NoGo} > 0.8$,
- else no decisions

Simulations

- 5 indications
- n=20 per indication
- Different Targets:

	Ind 1 - 4	Ind 5
Target GO	0.20	0.50
Target NO GO	0.10	0.20

Simulations: results 1/5

• Low efficacy in all indications

	ind 1	ind 2	ind 3	ind 4	ind 5
True resp. prob.	0.05	0.05	0.05	0.05	0.05
Prob. Go decision hier. basket	0	0	0	0	0
Prob. Go decision no borrowing	0	0	0	0	0
Prob. NO Go decision hier. basket	0.44	0.51	0.48	0.45	0.92
Prob. NO Go decision no borrowing	0.34	0.38	0.35	0.33	0.92

• Increase in NO GO decision

Simulations: results 2/5

• Efficacy in a single indications

	ind 1	ind 2	ind 3	ind 4	ind 5
True resp. prob.	0.05	0.05	0.05	0.05	0.60
Prob. Go decision hier. basket	0	0	0	0	0.58
Prob. Go decision no borrowing	0	0	0	0	0.58
Prob. NO Go decision hier. basket	0.44	0.45	0.44	0.43	0
Prob. NO Go decision no borrowing	0.34	0.38	0.35	0.33	0

- No difference in prob. GO decision ind. 5
- Much higher NO GO decision on low efficacy ind.

Simulations: results 3/5

• Borderline efficacy for 3 ind.

	ind 1	ind 2	ind 3	ind 4	ind 5
True resp. prob.	0.05	0.05	0.30	0.30	0.55
Prob. Go decision hier. basket	0	0	0.68	0.67	0.43
Prob. Go decision no borrowing	0	0	0.59	0.61	0.41
Prob. NO Go decision hier. basket	0.42	0.45	0	0	0
Prob. NO Go decision no borrowing	0.34	0.38	0	0	0

- Bordeline efficacy "promoted" to GO
- Low efficacy NO GO increased

Simulations: results 4/5

• Borderline efficacy for 3 ind. and clear efficacy in 1 ind.

	ind 1	ind 2	ind 3	ind 4	ind 5
True resp. prob.	0.05	0.30	0.30	0.30	0.65
Prob. Go decision hier. basket	0	0.70	0.76	0.76	0.80
Prob. Go decision no borrowing	0	0.56	0.59	0.61	0.75
Prob. NO Go decision hier. basket	0.39	0.01	0	0	0
Prob. NO Go decision no borrowing	0.34	0	0	0	0

- Increased probability to GO compared to previous scenario in bordeline Borrowing works !
- No increase in NO GO probability

Simulations: results 5/5

• 4 borderline ind.

	ind 1	ind 2	ind 3	ind 4	ind 5
True resp. prob.	0.25	0.30	0.30	0.30	0.10
Prob. Go decision hier. basket	0.55	0.67	0.72	0.73	0
Prob. Go decision no borrowing	0.38	0.56	0.59	0.61	0
Prob. NO Go decision hier. basket	0.01	0.01	0	0	0.67
Prob. NO Go decision no borrowing	0	0	0	0	0.66

• Increase prob. GO for the borderline ind.

• Smaller increase compared to previous scenario because smaller evidence

Hierarchical weights proposal:

- Desired borrowing properties
- Allows for different target in indications
- Careful choice of prior needed
- Small sample size ⇒ Discreteness may lead to no difference in P[GO] (still some benefit on posterior prop.)

- Comparison with existing approaches
- Staggered read-out of indications
- Include small randomization cohorts

Hierarchical weights proposal:

- Desired borrowing properties
- Allows for different target in indications
- Careful choice of prior needed
- Small sample size ⇒ Discreteness may lead to no difference in P[GO] (still some benefit on posterior prop.)

- Comparison with existing approaches
- Staggered read-out of indications
- Include small randomization cohorts

Hierarchical weights proposal:

- Desired borrowing properties
- Allows for different target in indications
- Careful choice of prior needed
- Small sample size ⇒ Discreteness may lead to no difference in P[GO] (still some benefit on posterior prop.)

- Comparison with existing approaches
- Staggered read-out of indications
- Include small randomization cohorts

Hierarchical weights proposal:

- Desired borrowing properties
- Allows for different target in indications
- Careful choice of prior needed
- Small sample size ⇒ Discreteness may lead to no difference in P[GO] (still some benefit on posterior prop.)

- Comparison with existing approaches
- Staggered read-out of indications
- Include small randomization cohorts

Thank you!