
Introduction Hierarchical Weights Discussion

Decision Making in Basket Trials:
A Hierarchical Weights Approach

David Dejardin1, Thomas Bengtsson2, Ulrich Beyer1,
Daniel Sabanés Bové1 and Paul Delmar1.
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Introduction: Basket Trials

Definition of Basket trial (here!)

Multi-arm trail to test a mechanism of action (MoA) in multiple indications

MoA often applicable across of indications
e.g. Cancer immuno-therapy (CIT)

Fast decision making on MoA

Fast decision making in most promising indication

Dejardin et al. Basket Trials BAYES 2016 3 / 19



Introduction Hierarchical Weights Discussion Gating

Introduction: Basket Trials

Context

Early phase oncology trials

Extension cohorts

Goal of basket trial designs: (here !)

Establish evidence of MoA across indications

Strengthen the evidence of MoA by borrowing from multiple
indications

Pre-requisite: Belief that if some indications show efficacy
⇒ increased confidence of efficacy in other indication
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Introduction: Basket Trials or not? (here!)

What is within our definition of basket trials:

Same agent tested in multiple indications sensitive to the MoA of the
drug

Different agents (combinations) with the same MoA in one or more
indications

⇒ Borrowing makes sense

What is not our definition of basket trials:

Umbrella trials = Different MoA (eg. different drugs) in single indication

Trials with treatment selection by biomarker / mutation

⇒ Borrowing between indications questionable

Dejardin et al. Basket Trials BAYES 2016 5 / 19



Introduction Hierarchical Weights Discussion Gating

Introduction: Framework

Binary response

Bayesian decision making

Dose already predefined (no dose escalation within basket trial)

Existing approaches:

Hierachical structure on response (eg. Thall et al. 2003)

Mixture of hierarchy (Neuenschwander et al. 2015)

Limitation of the hierarchical structure on response

ORR linked through common hyperparameter
⇒ Same ORR/difference across indications
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Bayesian decision making (Gating): Single indication

Early phase gating: Decision to stop or continue development

Decision criteria based on Posterior probability :

GO : PP = P[p > θu|data] > 0.8

p = probability of response
θu = upper target
0.8 = confidence level

P[p > θu|data] computed from beta(r + a, n − r + b)
n = number of subjects in ind., r = number of responses

Prior (a, b) chosen as vague or SOC
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Basket trial :

Alternative proposal: Hierarchical Weights Design
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Basket trial : Hierarchical Weights Design

Indication 1 
p1 

Indication 2 
p2 

Indication 3 
p3 

Indication 4 
p4 

W=hyper 
parameter for 
w1,w2,w3,w4 

Mixture prior  

𝑤1𝜋1
𝑖𝑛𝑓 + 1 − 𝑤1 𝜋𝑣 

Mixture prior  

𝑤2𝜋2
𝑖𝑛𝑓 + 1 − 𝑤2 𝜋𝑣 

Mixture prior 

𝑤3𝜋3
𝑖𝑛𝑓 + 1 − 𝑤3 𝜋𝑣 

Mixture prior 

𝑤4𝜋4
𝑖𝑛𝑓 + 1 − 𝑤4 𝜋𝑣 

Idea:

Prior for pj is a mixture

Hierarchy on weights

πinf
j favors target

Gating based on PP computed from mixture prior
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Hierarchical Weights Design

Prior on pj = mixture prior :

π(pj) = wj π
inf
j (pj) + (1− wj)πv (pj)

where

wj is an indication-specific weight:

wj not pre-specified

Hierarchical structure on wj :

logit(wj) ∼ N(θ, σj)
Hyper parameter for weights θ ∼ N(logit(0.1), σ)
⇒ Mean for θ favors vague prior
σj and σ small to force borrowing

πv (pj) is a vague prior for pj = Beta(1/2,1/2)
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Informative part of prior πinf
j (pj)

πinfj (pj) informative prior with mass above target for pj

Indication specific

Corresponds to efficacious treatment (above target)
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Gating

GO and No GO decisions: Posterior probability computed from 2
different priors:

1 PPGo = P[pj > GO target|obs. in all ind.]

GO gate ⇐ πinf
j (pj) close to GO target and above

2 PPNoGo = P[pj < No GO target|obs. in all ind]

No GO gate ⇐ πinf
j (pj) close to No GO target and below

Gating as follows:

GO if PPGo > 0.8,

if not, No GO if PPNoGo > 0.8,

else no decisions
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Simulations

5 indications

n=20 per indication

Different Targets:

Ind 1 - 4 Ind 5

Target GO 0.20 0.50
Target NO GO 0.10 0.20
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Simulations: results 1/5

Low efficacy in all indications

ind 1 ind 2 ind 3 ind 4 ind 5
True resp. prob. 0.05 0.05 0.05 0.05 0.05

Prob. Go decision hier. basket 0 0 0 0 0
Prob. Go decision no borrowing 0 0 0 0 0

Prob. NO Go decision hier. basket 0.44 0.51 0.48 0.45 0.92
Prob. NO Go decision no borrowing 0.34 0.38 0.35 0.33 0.92

Increase in NO GO decision
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Simulations: results 2/5

Efficacy in a single indications

ind 1 ind 2 ind 3 ind 4 ind 5
True resp. prob. 0.05 0.05 0.05 0.05 0.60

Prob. Go decision hier. basket 0 0 0 0 0.58
Prob. Go decision no borrowing 0 0 0 0 0.58

Prob. NO Go decision hier. basket 0.44 0.45 0.44 0.43 0
Prob. NO Go decision no borrowing 0.34 0.38 0.35 0.33 0

No difference in prob. GO decision ind. 5

Much higher NO GO decision on low efficacy ind.
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Simulations: results 3/5

Borderline efficacy for 3 ind.

ind 1 ind 2 ind 3 ind 4 ind 5
True resp. prob. 0.05 0.05 0.30 0.30 0.55

Prob. Go decision hier. basket 0 0 0.68 0.67 0.43
Prob. Go decision no borrowing 0 0 0.59 0.61 0.41

Prob. NO Go decision hier. basket 0.42 0.45 0 0 0
Prob. NO Go decision no borrowing 0.34 0.38 0 0 0

Bordeline efficacy “promoted” to GO

Low efficacy NO GO increased
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Simulations: results 4/5

Borderline efficacy for 3 ind. and clear efficacy in 1 ind.

ind 1 ind 2 ind 3 ind 4 ind 5
True resp. prob. 0.05 0.30 0.30 0.30 0.65

Prob. Go decision hier. basket 0 0.70 0.76 0.76 0.80
Prob. Go decision no borrowing 0 0.56 0.59 0.61 0.75

Prob. NO Go decision hier. basket 0.39 0.01 0 0 0
Prob. NO Go decision no borrowing 0.34 0 0 0 0

Increased probability to GO compared to previous scenario in bordeline
Borrowing works !

No increase in NO GO probability
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Simulations: results 5/5

4 borderline ind.

ind 1 ind 2 ind 3 ind 4 ind 5
True resp. prob. 0.25 0.30 0.30 0.30 0.10

Prob. Go decision hier. basket 0.55 0.67 0.72 0.73 0
Prob. Go decision no borrowing 0.38 0.56 0.59 0.61 0

Prob. NO Go decision hier. basket 0.01 0.01 0 0 0.67
Prob. NO Go decision no borrowing 0 0 0 0 0.66

Increase prob. GO for the borderline ind.

Smaller increase compared to previous scenario because smaller evidence

Dejardin et al. Basket Trials BAYES 2016 17 / 19



Introduction Hierarchical Weights Discussion

Discussion

Hierarchical weights proposal:

Desired borrowing properties

Allows for different target in indications

Careful choice of prior needed

Small sample size ⇒ Discreteness may lead to no difference in P[GO]
(still some benefit on posterior prop.)

To do:

Comparison with existing approaches

Staggered read-out of indications

Include small randomization cohorts
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Thank you!
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