BRMS.MMRM: A MODERN R PACKAGE FOR BAYESIAN MMRMS

WILL LANDAU – ELI LILLY AND COMPANY
CHRISTIAN STOCK – BOEHRINGER INGELHEIM
ANDREW BEAN – NOVARTIS
YONI SIDI – SANOFI
KEVIN KUNZMANN – BOEHRINGER INGELHEIM

Agenda

Openstatsware team

Bayesian MMRMs

{brms.mmrm} package

Future work

About

https://www.openstatsware.org/

ASA BIOP
European SIG in PSI
EFSPI

Formed in August 2022

56 members from 35 organizations (new ones welcome!)

Goals

Engineer selected R packages

Develop good software engineering practices

Collaborate with other R initiatives (e.g. R Consortium).

known for

Frequentist MMRMs are ubiquitous.

Specifically tailored to pharma, strong agreement with SAS

Uses TMB for robustness and speed.

What about Bayesian MMRMs?

• Example: Chronic Pain Master Protocol ISA in chronic lower back pain:

What is the study measuring?

Primary Outcome Measures 10

Outcome Measure	Measure Description	Time Frame
Change From Baseline for Average Pain Intensity as Measured by the Numeric Rating Scale (NRS) at Week 4	The NRS was used to describe pain severity. Participants were asked to describe their average pain over the past 24 hours, on a scale of 0 to 10: 0 = no pain, and 10 = pain as bad as you can imagine. Posterior mean change from baseline, 95 percent (%) credible interval was derived using Bayesian mixed model repeated measures. Data presented are posterior mean with 95% credible interval.	Baseline, Week 4

From https://clinicaltrials.gov/study/NCT05086289

Applied Modelling in Drug Development

Applied Modelling in Drug Development

Flexible regression modelling in Stan via **brms**

EDITORS

Sebastian Weber - sebastian.weber@novartis.com

PUBLISHED August 5, 2024

Björn Holzhauer - bjoern.holzhauer@novartis.com

Lukas Widmer - lukas_andreas.widmer@novartis.com

Andrew Bean - andrew.bean@novartis.com

13.4.2 brms implementation

The code below shows how we specify a MMRM model in a very similar way to SAS and the lme4 approach.

Openstatsware Bayesian MMRM Subteam

Will Landau Eli Lilly & Co

Christian Stock Boehringer Ingelheim

Yoni Sidi Sanofi

Andrew Bean Novartis

Kevin Kunzmann Boehringer Ingelheim

Goals

- ✓ Industry-wide standard implementation of Bayesian MMRMs.
- Modern backend tools.
- Easy to specify common types of MMRMs.
- Analyst-friendly workflow with easy post-processing.
- ☐ Historical borrowing through informative priors (ongoing).

New R package: {brms.mmrm}

{brms.mmrm}: friendly interface for MMRMs with {brms}

 $b \sim r + (m \mid s)$

Stan: probabilistic programming language for statistical modeling and computation.

Analyst-friendly workflow

3

Setup and preprocessing

brm_data()
brm_simulate_prior()

brm_archetype_cells()
brm_archetype_effects()
brm_archetype_average_cells()
brm_archetype_average_effects()
brm_archetype_successive_cells()
brm_archetype_successive_effects()

Modeling

brm_formula()
brm_formula_sigma()

brm_model()

Post-processing, summaries, and visualization

brm_marginal_draws()
brm_marginal_summaries()
brm_marginal_probabilities()

brm_plot_compare()
brm_plot_draws()

Example pulmonology dataset

```
data(fev_data, package = "mmrm")
raw_data <- fev_data %>%
    mutate(FEV1_CHG = FEV1 - FEV1_BL)
```

- Simulated clinical trial in chronic obstructive pulmonary disease (COPD).
- FEV1 = forced expired volume in one second.

Flexible model specification

```
brm formula(data)
#> FEV1_CHG ~ FEV1_BL + FEV1_BL:AVISIT + ARMCD + ARMCD:AVISIT + AVISIT +
#> RACE + WEIGHT + unstr(time = AVISIT, gr = USUBJID)
#> sigma ~ 0 + AVISIT
brm formula(
  data,
  model_missing_outcomes = TRUE,
  group_time = FALSE,
  sigma = brm_formula_sigma(
   data,
    intercept = TRUE,
   group_time = TRUE
#> FEV1_CHG | mi() ~ FEV1_BL + FEV1_BL:AVISIT + ARMCD + AVISIT +
#> RACE + WEIGHT + unstr(time = AVISIT, gr = USUBJID)
#> sigma ~ ARMCD:AVISIT + AVISIT
```


Priors with {brms}

```
library(brms)
prior \leftarrow \underline{\mathbf{c}}(
  set_prior("student_t(4, 0, 10)", class = "Intercept"),
  set prior("cauchy(0, 5.2)", coef = "sigma")
prior[, c("prior", "class", "coef")]
#>
                  prior class coef source
   student_t(4, 0, 10) Intercept (unknown)
         cauchy(0, 5.2) b sigma (unknown)
```


Fit the model

```
fit <- brm model(</pre>
  data = data,
  formula = formula,
  chains = 4,
  cores = 4,
  iter = 10000,
  warmup = 2000,
  refresh = 100
#> Compiling Stan program...
#> Start sampling
```

***Stan automatically throws warnings when convergence diagnostics fail.

{brms} fitted model object

```
class(fit)
#> [1] "brms_mmrm_model" "brmsfit"
summary(fit)
   Family: gaussian
    Links: mu = identity; sigma = log
#> Formula: FEV1_CHG ~ FEV1_BL + FEV1_BL:AVISIT + ARMCD + ARMCD:AVISIT +
    AVISIT + RACE + WEIGHT + unstr(time = #> AVISIT, gr = USUBJID)
#>
            sigma ∼ 0 + AVISIT
#>
     Data: modeled_data (Number of observations: 537)
#>
    Draws: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
#>
            total post-warmup draws = 32000
#>
```


Inference on marginal means

```
summaries_fit <- fit %>%
   brm_marginal_draws() %>%
   brm_marginal_summaries()

unique(summaries_fit$marginal)
#> [1] "difference_group" "effect"
#> [3] "response" "sigma"
```

```
See also brm_marginal_probabilities():
```

```
P(TRT - PBO > x \mid data)
```

```
summaries_fit
#> # A tibble: 120 × 6
     marginal
                       statistic group time value
                                                      mcse
     <chr>
                       <chr>
                                 <chr> <chr> <dbl>
                                                     <dbl>
    1 difference_group lower
                                       VIS1
                                              1.92 0.0202
                                 TRT
    2 difference group lower
                                       VIS2
                                              2.41 0.0136
                                 TRT
    3 difference_group lower
                                 TRT
                                       VIS3
                                              1.65 0.0105
    4 difference group lower
                                 TRT
                                       VIS4
                                              1.02 0.0260
                                       VIS1
    5 difference_group mean
                                              4.02 0.00734
                                 TRT
    6 difference_group mean
                                 TRT
                                       VIS2
                                              4.04 0.00397
                                       VIS3
    7 difference_group mean
                                 TRT
                                              2.98 0.00342
    8 difference_group mean
                                 TRT
                                       VIS4
                                              4.35 0.00778
    9 difference_group median
                                 TRT
                                       VIS1
                                              4.02 0.00889
#> 10 difference_group median
                                 TRT
                                       VIS2
                                              4.04 0.00508
```


Visualize posterior samples

library(ggplot2)
brm plot draws(draws\$response) +
 theme_gray(20)

Compare models and data

```
brm_plot_compare(
  data = brm_marginal_data(data),
  with_baseline = summaries_fit,
  without_baseline = summaries_fit2
) +
  theme_gray(20)
```


Informative priors

Without {brms.mmrm} archetypes

- X Hard to interpret specific model coefficients.
- X Covariate adjustment risks implicitly conditioning on a strange reference level.
- Consistent interface for specifying priors.

With {brms.mmrm} archetypes

- Transparent interpretation of fixed effects.
- ✓ Guardrails so priors have the intended effect on the model.
- Consistent interface for specifying priors.

Informative priors

Without {brms.mmrm} archetypes

- X Hard to interpret specific model coefficients.
- X Covariate adjustment risks implicitly conditioning on a strange reference level.
- Consistent interface for specifying priors.

With {brms.mmrm} archetypes

- Transparent interpretation of fixed effects.
- ✓ Guardrails so priors have the intended effect on the model.
- Consistent interface for specifying priors.

Informative prior archetypes

archetype <- brm archetype successive cells(data, baseline = FALSE)</pre>

```
archetype
#> # A tibble: 800 × 20
#> x_PB0_VIS1 x_PB0_VIS2 x_PB0_VIS3 x_PB0_VIS4 x_TRT_VIS1
#> * <dbl> <dbl> <dbl> <dbl>
```


Transparent interpretation

```
summary(archetype)
#> # This is the "successive cells" informative prior archetype in brms.mmrm.
#> # The following equations show the relationships between the
#> # marginal means (left-hand side) and fixed effect parameters
#> # (right-hand side).
#> #
#> # PB0:VIS1 = x_PB0_VIS1
\#> \# PB0:VIS2 = x_PB0_VIS1 + x_PB0_VIS2
      PB0:VIS3 = x_PB0_VIS1 + x_PB0_VIS2 + x_PB0_VIS3
#> #
#> #
      PB0:VIS4 = x PB0 VIS1 + x PB0 VIS2 + x PB0 VIS3 + x PB0 VIS4
#> #
      TRT:VIS1 = x_TRT_VIS1
#> # TRT:VIS2 = x_TRT_VIS1 + x_TRT_VIS2
       TRT:VIS3 = x_TRT_VIS1 + x_TRT_VIS2 + x_TRT_VIS3
#> #
#> #
      TRT:VIS4 = x_TRT_VIS1 + x_TRT_VIS2 + x_TRT_VIS3 + x_TRT_VIS4
```


Labels for specification

```
label
#> # A tibble: 8 × 3
    code
                              group time
   <chr>
                              <chr> <chr>
#> 1 student_t(4, -7.57, 4.96) PB0
                                    VIS1
  2 student_t(4, 3.14, 7.86) PBO
                                    VIS2
  3 student_t(4, 8.78, 8.18) PBO
                                    VIS3
#> 4 student_t(4, 3.36, 8.10) PBO
                                    VIS4
#> 5 student_t(4, -2.96, 4.78) TRT
                                    VIS1
#> 6 student_t(4, 3.13, 7.64) TRT
                                    VIS2
#> 7 student_t(4, 7.65, 8.24) TRT
                                    VIS3
#> 8 student_t(4, 4.64, 8.21) TRT
                                    VIS4
```

Returns a valid brms prior for the important fixed effects.

prior <- brm_prior_archetype(label = label, archetype = archetype)</pre>

Everything downstream is the same

```
model <- brm_model(
  data = archetype,
  formula = formula,
  prior = prior,
  refresh = 0
)
#> Compiling Stan program...
#> Start sampling
```

```
draws <- brm_marginal_draws(
  data = archetype,
  formula = formula,
  model = model
)
summaries_model <- brm_marginal_summaries(draws)
summaries_data <- brm_marginal_data(archetype)
brm_plot_compare(model = summaries_model, data = summaries_data)</pre>
```


Future and ongoing work

- Multiple historical data sources (e.g. computationally efficient meta-analytic predictive priors).
- Data sources with misaligned time points.
- Borrowing from a subset of time points.
- Quantification of prior effective sample size.

Thanks

- Openstatsware
- Bayesian MMRM Subteam
- BAYES 2024

Sources

- Bürkner, P.C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.
 Journal of Statistical Software, 80(1), 1-28.
- ClinicalTrials.gov (2023). National Library of Medicine (US). Identifier NCT05086289, "
 Chronic Pain Master Protocol (CPMP): A Study of LY3526318 in Participants With Chronic Low Back Pain". https://clinicaltrials.gov/study/NCT05086289.
- Holzhauer, B., and Weber, S. (2024), "Bayesian mixed effects model for repeated measures," in Applied Modeling in Drug Development, Novartis AG.
 https://opensource.nibr.com/bamdd/src/02h_mmrm.html.
- Landau, W. M., Kunzmann, K., Sidi, Y., Stock, C. (2024). "brms.mmrm: Bayesian MMRMs using 'brms'". R package version 1.1.0. https://openpharma.github.io/brms.mmrm/.
- Mallinckrodt, C.H., Lane, P.W., Schnell, D. et al. (2008). Recommendations for the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials. Ther Innov Regul Sci 42, 303–319.
- Sabanes Bove, D., Li, L., Dedic, J., et al. (2024). "mmrm: Mixed Models for Repeated Measures". R package version 0.3.12. https://openpharma.github.io/mmrm/.

Appendix: Bayesian MMRM definition

Repeated measures of each patient y_n:

Legend

Data

Parameters

Independent multivariate normal patients n = 1, ..., N:

<u>Legend</u>

 Data

 ${f Parameters}$

$$y_n \stackrel{\text{ind}}{\sim} \text{MVN}(X_n b, \Sigma_n)$$

Separately model variances and correlations:

<u>Legend</u>

Data

Parameters

Distributional regression for standard deviations:

Legend

Data

Parameters

$$\sigma_n = \exp\left(Z_n b_{\sigma}\right)$$

sigma ~ AVISIT*TRT01P + AGE + ...

Priors for parameters:

$$\frac{b}{b_{\sigma}} \sim F()$$

$$b_{\sigma} \sim G()$$

Usually independent normals and Student t's

Legend

Parameters

Usually unstructured: LKJ (shape = η)

